MultiV - Unit 1

3D Distance Formula: $d^2 = (x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2$ **3D Sphere Formula:** $r^2 = (x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2$

Magnitude of a Vector: $|v| = \sqrt{x^2 + y^2}$ Direction of a Vector: $\tan(\emptyset) = y/x$ Unit Vector in Direction of Other Vector: u = v / |v|Dot Product: $u \cdot v = \langle x_1 x_2 + y_1 y_2 \rangle$ If the dot product of two vectors is 0, the vectors are orthogonal Magnitude²: $|u|^2 = u \cdot u = x^2 + y^2$ Law of Cosines Math: $u \cdot v = |u| |v| \cos(\emptyset) \rightarrow \cos(\emptyset) = (u \cdot v) / |u| |v|$ $|\operatorname{Proj}_u(v)| = v \cdot (u / |u|)$ $\operatorname{Proj}_u(v) = |\operatorname{proj}_u(v)| \times (u / |u|)$ Matrices: |a c |x|x| = |e| |b d| |y| |f|Inverse Matrices: $A \times A^{-1} = 1$ Determinant: ad-bc (area of parallelogram) If A^{-1} exists, $detA \neq 0$

Cross Product: $\cup x \lor v = |i \ j \ k| = |\cup_2 \cup_3 |i - |\cup_1 \cup_3 |j + |\cup_1 \cup_2 |k|$ $|\cup_1 \cup_2 \cup_3 | \ |\vee_2 \vee_3 | \ |\vee_2 \vee_3 | \ |\vee_1 \vee_2 |$ $|\vee_1 \vee_2 \vee_3 |$

Finding Parametric Equations from Two Points:

1) Set up vertical vectors on left side of = with x, y, and possibly z variables

- 2) Use first point as first vertical vector on right side of =
- 3) Find vector between two points, multiply by t for final part of vector equation
- 4) Vertically separate to get parametric equations by variable

Find Distance from a Point to a Line:

1) Find equation of line

- 2) Find vector from line to point using a random point on the line
- 3) Project the vector you found from point to line onto the line
 - If given parametric form of line, use the given start point and then the number attached to t is the actual vector of the line
- 4) Find the rejection, which is the shortest vector from the line to the point
 - Rejection = (vector from line to point) (projection of vector onto line)
- 5) The magnitude of the rejection vector is the distance from the line to the point

Equation of Plane: ax + by + cz = d

Position of Point r on Plane: $n \cdot (r - p) = 0$

- n (normal) represented in equation by vertical (a, b, c)
- p (given point) represented by actual values
- r (point we are finding) represented by vertical (x, y, z)

Scalar Form of Point on Plane: $a(x - x_0) + b(y - y_0) + c(z - z_0) = 0$

Finding Equation of a Plane from Three Points:

1) Given the three points, find two vectors between the points

- 2) Find the cross product of these two vectors
 - This new vector is n (normal), perpendicular to the plane we are finding
- 3) Pick a random point that we know for sure is on the plane
 - Good idea is to use one of the starting given points
- 4) Use the equation $n \cdot (r p) = 0$ with (a, b, c) as r values \rightarrow solve for standard form of plane

Find Distance from Plane to Origin (or any point):

- 1) Take the coefficients from the equation of the plane to create the normal vector
- 2) Find a point on the plane by setting y and z equal to 0, solve for equation
- 3) Find vector between given point and random point on plane
- 4) Project this vector onto the normal

Going from Rectangular (x, y, z) to Cylindrical (r, theta, z):

1) Solve for r with the equation $r^2 = x^2 + y^2$

2) Find theta by $tan(\phi) = y/x$

Going from Cylindrical (r, theta, z) to Spherical (rho, theta, phi):

1) Find rho by $r^2 + z^2 = rho^2$ 2) Find phi by z = rho cos (phi)