Unit 1 Group Work
MultiV 2021-22 / Dr. Kessner

No calculator! Have fun!

1. Let

$$
\begin{aligned}
& \vec{u}=\langle 2 \sqrt{3}, 2\rangle=4\left\langle\frac{\sqrt{3}}{2}, \frac{1}{2}\right\rangle \\
& \left.\vec{v}=\left\langle\frac{5}{2}, \frac{5 \sqrt{3}}{2}\right\rangle=5<\frac{1}{2}, \frac{\sqrt{3}}{2}\right\rangle
\end{aligned}
$$

Express \vec{v} as the sum of a vector with the same direction as \vec{u} and a vector orthogonal to \vec{u}.

$$
\begin{aligned}
d= & v-p \operatorname{poju} \\
& =\left\langle\frac{5}{2}, \frac{5 \sqrt{3}}{2}\right\rangle-\left\langle\frac{15}{4}, \frac{5 \sqrt{3}}{4}\right\rangle \\
& =\left\langle\frac{5}{4}, \frac{5 \sqrt{3}}{4}\right\rangle
\end{aligned}
$$

chcele:

$$
\begin{aligned}
& \text { projuv }+\bar{d} \\
& =\left\langle\frac{15}{4}, \frac{5 \sqrt{3}}{4}\right\rangle+\left\langle\frac{-5}{4}, \frac{5 \sqrt{3}}{4}\right\rangle \\
& =\left\langle\frac{5}{2}, \frac{5 \sqrt{3}}{2}\right\rangle=\sqrt[V]{V} \\
& \bar{d} \perp \bar{u}: \bar{d} \cdot \bar{\pi}=\left\langle\frac{-5}{4 \pi}, \frac{5 \sqrt{3}}{4}\right\rangle \cdot\left\langle\frac{\sqrt{3}}{2}, \frac{1}{2}\right\rangle \\
& \begin{array}{l}
=\frac{-5 \sqrt{3}}{8}+\frac{5 \sqrt{3}}{8} \\
=0
\end{array}
\end{aligned}
$$

2. Find the equation of the plane through the points: $(3,0,0),(0,5,0)$, and $(0,0,2)$. You must use vectors to obtain your equation. Once you have your equation, verify your intercepts. Also calculate the distance from the plane to the origin.

$$
\left.\begin{array}{rl}
\bar{n}=\bar{x} \times \vec{v} & =\left[\begin{array}{ccc}
\vec{v} & \vec{v} & \vec{k} \\
-3 & 5 & 0
\end{array}\right. \\
-3 & 0
\end{array}\right)
$$

$$
\operatorname{et} \bar{p}=\left(\frac{3}{z}\right)
$$

$$
\text { plane } \vec{n} \cdot(\vec{r}-p)=0
$$

$$
10(x-3)+6(y-0)+15(z-0)=0
$$

$10 x+6 y+15 z=30$
distance

$$
\begin{aligned}
d & =\left|\bar{p} \cdot \frac{\pi}{\sqrt{n} 1}\right| \\
& =\left(\begin{array}{l}
3 \\
0 \\
0
\end{array}\right) \cdot\left(\begin{array}{l}
11 \\
6 \\
15 \\
\end{array}=\frac{30}{\sqrt{361}}\right.
\end{aligned}
$$

$$
=\left(\begin{array}{c}
3 \\
0 \\
0
\end{array}\right) \cdot\left(\begin{array}{c}
10 \\
6 \\
15
\end{array}\right) \frac{1}{\sqrt{361}}
$$

3. Find parametric equations for the line through $\langle 5 \sqrt{2}, 0,0\rangle$ and $\langle 0,5 \sqrt{2}, 0\rangle$. Find the distance from the point $\langle 0,0, \sqrt{119}\rangle$ to the line.

$$
\begin{aligned}
\left|\operatorname{proj}_{u} v\right| & =\bar{v} \cdot \frac{\bar{u}}{|\bar{u}|} \\
& =\binom{-5 \sqrt{2}}{\sqrt{119}} \cdot\left(\begin{array}{c}
-5 \sqrt{2} \\
5 \sqrt{2} \\
0
\end{array}\right) \frac{1}{10} \\
& =5 \\
\operatorname{proj}_{u} v & =5 \cdot \frac{\bar{\omega}}{\bar{\omega} \mid}=\frac{5 \sqrt{2}}{2}\left(\begin{array}{c}
-1 \\
1 \\
0
\end{array}\right)
\end{aligned}
$$

$$
\begin{aligned}
& d^{2}=2\left(\frac{5 \sqrt{2}}{2}\right)^{2}:(\sqrt{142})^{2}=2 \cdot \frac{25}{2}+119=144 \\
& d=12
\end{aligned}
$$

4. Express the following vectors in both cylindrical and spherical coordinates.
a. $\mathbf{i}+\mathbf{j}$

$$
\begin{aligned}
& (p, \theta, \varphi)=\left(\sqrt{2}, \frac{\pi}{4}, \frac{\pi}{2}\right) \\
& (r, \theta, z)=\left(\sqrt{2}, \frac{\pi}{4}, 0\right)
\end{aligned}
$$

b. $\mathbf{j}+\mathbf{k}$

$$
\begin{aligned}
& (\rho, \theta, \varphi)=\left(\sqrt{2}, \frac{\pi}{2}, \frac{\pi}{4}\right) \\
& (r, \theta, z)=\left(1, \frac{\pi}{2}, 1\right) \\
& (p, \theta, \varphi)=(\sqrt{2}, 0, \pi / 4) \\
& (r, \theta, z)=(1,0,1)
\end{aligned}
$$

d. $\mathbf{i}+\mathbf{j}+\mathbf{k}$

