No calculator! Have fun!

1. Consider the general helix:

$$
\mathbf{r}(t)=\langle a \cos t, a \sin t, b t\rangle
$$

a. Calculate the velocity, speed, and acceleration of this curve.

$$
r^{\prime}(f)=\left(\begin{array}{c}
-a s i n t \\
a \operatorname{cost} t \\
b
\end{array}\right) \quad r^{\prime \prime}(f)=\left(\begin{array}{c}
-a \cos t \\
-a \sin t \\
0
\end{array}\right)
$$

b. Calculate the tangent $\mathbf{T}(t)$, normal $\mathbf{N}(t)$, and binormal $\mathbf{B}(t)$ vector functions.

$$
\begin{aligned}
& f(t)=\sqrt{a^{2} x^{2}}{ }^{2}
\end{aligned}
$$

$$
\begin{aligned}
& T^{\prime}(t)=\frac{1}{\sqrt{r^{2} b^{2}}}\left(\begin{array}{l}
-a \cos t \\
-a \\
0
\end{array}\right) \\
& N(t)=\binom{-0 \text { est }}{-3 t y}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1}{\sqrt{a^{2} b^{2}}}\left(\begin{array}{c}
b \sin t \\
-b \cos t \\
a
\end{array}\right)
\end{aligned}
$$

c. Find the equations of the osculating (TN), normal (NB), and rectifying (TB) planes at $t=0$ and $t=\pi / 2$.

$$
\begin{aligned}
& t=0 \text { IN } \bar{n}=B= \frac{1}{\sqrt{a^{2}+b^{2}}(}\left(\begin{array}{c}
0 \\
b \\
a
\end{array}\right) \\
&-b y+a z=0 \\
&(a, 0,0) \\
& \quad-\quad \begin{array}{l}
n=T
\end{array}\left(\begin{array}{l}
0 \\
a \\
b
\end{array}\right) \frac{1}{\sqrt{a^{2}+b^{2}}} \\
& a y+b z=0 \\
& L B \quad \bar{n}=N=\left(\begin{array}{l}
-1 \\
0 \\
0
\end{array}\right) \\
& x=a
\end{aligned}
$$

$t=\frac{1}{2}(0, a, b / 2)$
$\mathbb{T N} \pi=B=\frac{1}{1 a^{24=2}}=\left(\begin{array}{l}b \\ a \\ a\end{array}\right)$ $b x+a\left(z-\frac{6 \pi}{2}\right)=0$ $b x+a z=\frac{a b \pi}{2}$
NB $\bar{n}=T=\frac{1}{\sqrt{a^{2} 1 b^{2}}}\left(\begin{array}{c}-a \\ 0 \\ 0\end{array}\right)$
$-a x+b(z-b \pi / 2)=0$

$$
-a x+b z=b^{2} / 2
$$

$$
\text { 预 } \bar{n}=N=\left(\begin{array}{c}
0 \\
-1 \\
0
\end{array}\right)
$$

2. a. Parametrize the general helix as in $\# 1$, but this time oriented along the x-axis. (As in $\# 1$, let a be the radius and b the speed along the axis).

b. Calculate the arc length of the curve as a function of t, starting from $t=0$.

$$
S(t)=\int_{0} \int_{0}^{F}(t) / d t=\sqrt{20 a^{2} t} t
$$

c. Re-parametrize the curve by arc length.

$$
\begin{aligned}
t & =\frac{1}{\sqrt{a^{2}+b^{2}}} s \\
\bar{r}(s) & =\left(\begin{array}{c}
b s / \sqrt{a^{2} x^{2}} \\
a \cos \left(\frac{s}{\sqrt{a^{3}+b^{2}}}\right) \\
a \sin \left(\frac{s}{\sqrt{a^{2} b^{2}}}\right)
\end{array}\right)
\end{aligned}
$$

3. Consider the curve given by the spherical equations:

$$
\begin{aligned}
\rho & =4 \\
\theta & =\frac{\pi}{4} \\
\phi & =t
\end{aligned}
$$

a. Parametrize the curve in standard rectangular coordinates $\mathbf{r}(t)=\langle x(t), y(t), z(t)\rangle$. What is this curve?

$$
\begin{aligned}
& r=\rho \sin \varphi=4 \sec t \quad x=r \cos 4 \\
& =4 \sin t \cos \pi / 4 \\
& =2 \sqrt{2} \sin t \\
& \begin{aligned}
y & =r \sin \theta \\
& =4 \sin t \cdot \frac{\sqrt{2}}{2} \\
& =2 \sqrt{2} \sin t
\end{aligned} \\
& \bar{r}(t)=\left(\begin{array}{c}
2 \sqrt{2} \sec t \\
2 \sqrt{2} \operatorname{sen} t \\
4 \cos t
\end{array}\right) \\
& \begin{array}{l}
\bar{r}^{\prime}(t)=\left(\begin{array}{l}
2 \sqrt{2} \cos t \\
2 \sqrt{2} \cos t \\
-4 \operatorname{sict} t
\end{array}\right) \\
\left|\bar{r}^{\prime}(t)\right|=4
\end{array}
\end{aligned}
$$

b. Find the arc length of the curve as a function of t, and re-parametrize by arc length.

$$
F(s)=\left(\begin{array}{cc}
2 \sqrt{2} & \sin (s / 4) \\
2 \sqrt{2} & \sin (5 / 4) \\
4 & \cos (5 / 4)
\end{array}\right)
$$

4. a. Consider the following function defined in polar coordinates:

$$
r=\frac{12}{2-\sin \theta}
$$

Sketch the graph of the curve. Also find the equation of the function in rectangular coordinates.

b. Consider the following function defined in polar coordinates:

$$
r=\frac{12}{2+2 \sin \theta}
$$

Sketch the graph of the curve. Also find the equation of the function in rectangular coordinates.

$$
\begin{array}{l|lll}
\theta & r=\frac{12}{2+2 \sin \theta} \\
0 & 6 & & y=3-\frac{1}{12} x^{2} \\
\pi / 2 & 3 & 6 &
\end{array}
$$

