Unit 2 Test
MultiV 2021-22 / Dr. Kessner

No calculator! Have fun!

1. Consider the curve defined by the vector function

$$
\mathbf{r}(t)=\left(\begin{array}{c}
10 \cos t \\
5 \sqrt{2} \sin t \\
5 \sqrt{2} \sin t
\end{array}\right)
$$

What is the curve?
a) Find the velocity and speed of this curve.

$$
\Gamma^{\prime}(t)=\left(\begin{array}{c}
-10 \sin t \\
5 \sqrt{2} \cos 5 \\
5 \sqrt{2} 50 t
\end{array}\right) \quad\left|F^{\prime}(t)\right|=10
$$

b) Find $\mathbf{T}(t), \mathbf{N}(t)$, and $\mathbf{B}(t)$.

$$
\begin{aligned}
& \left|T^{\prime}(t)\right|=1
\end{aligned}
$$

c) Find the equations of the osculating (TN), normal (NB), and rectifying (TB) planes at $t=0$.

$$
\begin{aligned}
& \bar{r}(0)=\binom{0}{0} \\
& \mathbb{N} \pi=B=\frac{\sqrt{2}}{2}\left(\begin{array}{c}
0 \\
-1 \\
1
\end{array}\right) \\
& \frac{N B}{\pi} \\
& \left.\pi=T=\frac{\sqrt{2}}{2}\left(\begin{array}{l}
0 \\
1 \\
1
\end{array}\right) \right\rvert\, \frac{T B}{x=10} \pi=N=\left(\begin{array}{c}
-1 \\
0 \\
0
\end{array}\right) \\
& -y+z=0 \\
& z=y
\end{aligned}
$$

2. Consider the curve defined by:

$$
\mathbf{r}(t)=\left(\begin{array}{c}
\cos 5 t^{2} \\
\sin 5 t^{2} \\
7
\end{array}\right)
$$

a) Find the velocity and speed of this curve.

$$
\begin{aligned}
& r^{\prime}(t)=\binom{-10 t \sin 5 t^{2}}{10 t \cos 5 t^{2}} \\
& \left(r^{\prime}(t) \mid=10 t\right.
\end{aligned}
$$

b) Find the arc length of the curve $s(t)$, starting from $t=0$.

$$
\begin{aligned}
s(t) & =\int_{0}^{t} \Gamma^{\prime}(t) d t \\
& =\int_{0} t / D t d t=5 t^{2}
\end{aligned}
$$

c) Reparametrize the curve by arc length. What is the curve?

$$
\bar{r}(t)=\left(\begin{array}{c}
\cos s \\
\sin s \\
7
\end{array}\right)
$$

3. Suppose that a projectile is launched (in 3D, z is up) from a platform 80 ft . above the origin. The initial position $\left(x_{0}, y_{0}, z_{0}\right)=(0,0,80)$ and initial velocity $\left(v_{x}, v_{y}, v_{z}\right)=(30,40,64)$.
a) Assume that the acceleration $\mathbf{a}(t)=\langle 0,0,-32\rangle$, i.e. gravity acts in the z direction. Find the velocity vector $\mathbf{v}(t)$.

$$
F(t)=\left(\begin{array}{l}
w \\
v_{y} \\
\\
V z-32 t
\end{array}\right)=\left(\begin{array}{l}
30 \\
40 \\
64-32 t
\end{array}\right)
$$

b) Find the position vector $\mathbf{r}(t)$.

$$
\bar{r}(t)=\left(\begin{array}{l}
30 t \\
40 t \\
80+64 t-16 t^{2}
\end{array}\right)
$$

c) What is the maximum height (z value) of the projectile?

$$
\begin{aligned}
z(t) & =-16 t^{2}+64 t+80 \\
& =-16\left(t^{2}-4 t-5\right) \\
& =-16(t-5)(t+1)
\end{aligned}
$$

$$
\begin{aligned}
& z^{\prime}(t)=-32 t+64 \\
& z^{\prime}(t)=0 \text { what } t=2 \\
& z(2)=144
\end{aligned}
$$

d) The projectile hits the ground when $z(t)=0$. When does this happen? What is the (x, y) position when it hits the ground? What is the distance from the origin to the point of impact?

$$
\begin{gathered}
z(t)=0 \text { at } t=5 \\
\binom{y}{y}\binom{150}{200} \\
r=250
\end{gathered}
$$

4. a. Consider the following function defined in polar coordinates:

$$
r=\frac{6}{1+2 \cos \theta}
$$

Sketch the graph of the curve. Also find the equation of the curve in rectangular coordinates.

b. Consider the following function defined in polar coordinates:

$$
r=\frac{6}{2+\cos \theta}
$$

Sketch the graph of the curve. Also find the equation of the curve in rectangular coordinates.

θ	r
0	2
$\pi / 2$	3
π	6
$3 \pi / 2$	3

Bonus Suppose $\mathbf{r}(t)$ is a curve on the unit sphere. Prove that the velocity vector is always orthogonal to the position vector.

Bonus Show that the result above implies that $\mathbf{T}(t), \mathbf{N}(t)$ and $\mathbf{B}(t)$ are pairwise orthogonal unit vectors for any curve $\mathbf{r}(t)$, for all t. (In other words, $\mathbf{T}(t), \mathbf{N}(t)$, and $\mathbf{B}(t)$ form what is known as an orthonormal basis for \mathbb{R}^{3}.)

Bonus Assume Newton's second law: $\mathbf{F}=m \mathbf{a}$. Suppose that an object is moving with its position given by $\mathbf{r}(t)$ and velocity by $\mathbf{v}(t)$. Also suppose that the only force acting on the object is a central force (in other words, the force is always directed toward the origin). Show that $\mathbf{r}(t) \times \mathbf{v}(t)$ is constant. Why does this imply that the motion is constrained to a plane?

Bonus Suppose you are given a point (focus) and a line (directrix). Recall the alternate geometric definition of an ellipse: every point on the ellipse satisfies

$$
\frac{\text { distance to focus }}{\text { distance to directrix }}=e<1
$$

Let d be the distance between the focus and directrix. Derive the polar equation for the ellipse.

