Unit 3 Group Work 2
MultiV 2021-22 / Dr. Kessner

Be sure to show all work. No calculator! Have fun!

1. Consider the function $f(x, y)=\sqrt{x^{2}+y^{2}}$.
a. Draw the level sets $f(x, y)=0,1,2,3$ in the $x y$ plane. What is the surface $z=f(x, y)$?
b. At each of the following points, find the direction of maximum change of f and calculate the directional derivative in that direction. (Do your answers make sense?)

- $\left\langle x_{0}, y_{0}\right\rangle=3\left\langle\cos \frac{\pi}{6}, \sin \frac{\pi}{6}\right\rangle=\left\langle\frac{3 \sqrt{3}}{2}, \frac{3}{2}\right\rangle$.
- $\left\langle x_{0}, y_{0}\right\rangle=2\left\langle\cos \frac{5 \pi}{4}, \sin \frac{5 \pi}{4}\right\rangle=\langle-\sqrt{2},-\sqrt{2}\rangle$
c. Consider the parametric curve $\langle x(t), y(t)\rangle=\langle 5 \cos t, 5 \sin t\rangle$. Find the composite function $f(t)=$ $f(x(t), y(t))$. Find the derivative $\frac{d f}{d t}$ in two different ways: 1) using standard differentiation, 2) using the multivariable chain rule.
d. Consider the parametric curve $\langle x(t), y(t)\rangle=\langle t \cos t, t \sin t\rangle$. Find the composite function $f(t)=$ $f(x(t), y(t))$. Find the derivative $\frac{d f}{d t}$ in two different ways: 1) using standard differentiation, 2) using the multivariable chain rule.
e. For the following points in \mathbb{R}^{3}, verify that the point is on the surface $z=f(x, y)$, and find the tangent plane to the surface there. (Do your answers make sense?)
- $(3,0,3)$
- $(0,5,5)$
f. Now consider this same function in polar coordinates:

$$
\begin{aligned}
& x=r \cos \theta \\
& y=r \sin \theta
\end{aligned}
$$

Calculate $\frac{\partial f}{\partial r}$ and $\frac{\partial f}{\partial \theta}$ using the multivariable chain rule (but check your answer by differentiating the composite function). (How is this related to parts (b) and (c)?)
2. Let

$$
F(x, y, z)=\frac{x^{2}}{16}+\frac{y^{2}}{25}
$$

and consider the level surface $F(x, y, z)=1$. What does the surface look like?
a. For the following points in \mathbb{R}^{3}, verify that the point is on the surface, and find the tangent plane to the surface there. (Do your answers make sense?)

- $(4,0,0)$
- $(4,0,10)$
- $(0,5,0)$
- $(0,5,-10)$
b. Verify that the curve $\langle x(t), y(t), z(t)\rangle=\langle 4 \cos t, 5 \sin t, t\rangle$ lies on the surface. Calculate $\frac{d F}{d t}$ using the chain rule.
c. Verify that the curve $\langle x(t), y(t), z(t)\rangle=\left\langle 4 \cos t, 5 \sin t, e^{t} \sin t\right\rangle$ lies on the surface. Calculate $\frac{d F}{d t}$ using the chain rule.
d. Verify that the curve $\langle x(t), y(t), z(t)\rangle=\left\langle 4,0, e^{t} \sin t\right\rangle$ lies on the surface. Calculate $\frac{d F}{d t}$ using the chain rule.

Interpret your calculations (b)-(d) as statements about orthogonality.
3. Let $R_{\theta}=\left(\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right)$ represent rotation in the plane.

Verify that $R_{\frac{\pi}{2}}^{2}=R_{\pi}$ and $R_{\pi}^{2}=R_{2 \pi}=I$.

