Unit 4 Test
MultiV 2021-22 / Dr. Kessner

Have fun!

No calculator! Remember to verify local minima with a 2nd derivative test where appropriate!

1. a) Find the points where f(z,y) = 4z + 3y is maximized and minimized on the unit circle.
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b) For each of these points, find the equation of the line tangent to the unit circle at that point.
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2. Find the dimensions that maximize the volume of a cylinder with surface area 6007 (lateral area + top +
bottom) in two different ways: 1) substitution, and 2) Lagrange multipliers.
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3. Let g(z,y) = —2% — y? — 20 — 2y — 2. Find any critical points and identify as a local min/max or saddle
point. Complete the square to identify the surface and verify your answer.
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4. Let h(z,y) = sinxsiny.
a) Verify that the following are all critical points: (w/2,7/2), (7/2,3%/2), (m,7), (37/2,7/2), (37 /2,37/2)
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b) Classify each of the critical points using the 2nd derivative test.
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Bonus: Characterize the set of all critical points, and specify which are local minima, local maxima, and
saddle points. Describe the shape of the graph z = h(z,y).



Bonus: Write the 2nd order approximation for a function f : R — R.

Bonus: Justify the 2nd derivative test for a function f : R — R.



Bonus: Consider the line through (zg,yo) that is orthogonal to <z> Show that the point-normal form of

the line is equivalent to the slope-point form of the line.

Bonus: Rotate the multiplication table to show that it is a pringle. In other words, rotate the function
m(x,y) = xy to remove the zy term and show that it is actually a hyperbolic paraboloid.



