Geometric Algebra Classwork (Reflection)
 MultiV 2021-22 / Dr. Kessner

Let $u=e_{1}$ and $v=\frac{1}{\sqrt{2}}\left(e_{1}+e_{2}\right)$.
Define the transformations $R_{u}(w)=u w u, R_{v}(w)=v w v$, and $R_{u v}(w)=(v u) w(u v)$.

1. Show that $R_{u}\left(e_{1}+e_{3}\right)=e_{1}-e_{3}$ and $R_{u}(u)=u$.
2. For a general $w=w_{x} e_{1}+w_{y} e_{2}+w_{z} e_{3}$, show that $R_{u}(w)=w_{x} e_{1}-w_{y} e_{2}-w_{z} e_{3}$. In other words, the y and z coordinates are negated. What is the transformation R_{u} ?
3. Show that $R_{v}\left(e_{1}\right)=e_{2}, R_{v}(v)=v$ and $R_{v}\left(e_{1}+e_{3}\right)=e_{2}-e_{3}$. What is the transformation R_{v} ?
4. Show that $R_{u v}\left(e_{1}\right)=e_{2}, R_{u v}\left(e_{3}\right)=e_{3}$, and $R_{u v}\left(e_{1}+e_{3}\right)=e_{2}+e_{3}$. What is the transformation $R_{u v}$? Note that $R_{u v}=R_{v} R_{u}$.
5. Define the transformation $M_{x}(w)=-R_{u}(w)$. Calculate $M_{x}(w)$ for a general $w=w_{x} e_{1}+w_{y} e_{2}+w_{z} e_{3}$. What is this transformation? Describe how the transformation changes the coordinates.
6. Define transformations M_{y} and M_{z} and show that they act as expected on a general $w=w_{x} e_{1}+w_{y} e_{2}+$ $w_{z} e_{3}$.
