Geometric Algebra HW 1 (Wedge Product)
 MultiV 2021-22 / Dr. Kessner

1. For each of the following pairs of vectors \mathbf{u} and \mathbf{v}, find the wedge product $\mathbf{u} \wedge \mathbf{v}$. Draw the vectors and make sure your answer makes sense geometrically.
a. $\mathbf{u}=\binom{2}{0}, \mathbf{v}=\binom{0}{1}$
b. $\mathbf{u}=\binom{0}{2}, \mathbf{v}=\binom{1}{0}$
c. $\mathbf{u}=\binom{3}{0}, \mathbf{v}=\binom{3}{3}$
d. $\mathbf{u}=\binom{3}{1}, \mathbf{v}=\binom{1}{3}$
2. Find the area of the triangle determined by the two vectors $\mathbf{u}=\binom{2}{2}$ and $\mathbf{v}=\binom{-2}{2}$.

Find a general formula for the area of a triangle determined by two vectors \mathbf{u} and \mathbf{v}.
3. Find the distance from the point $(2,2)$ to the line $2 x+2 y=2$.
4. Find the distance from the point $(7,7)$ to the line $6 x+8 y=48$.

Answers:
1a. $2 \mathbf{e}_{\mathbf{1}} \wedge \mathbf{e}_{\mathbf{2}}$
1b. $-2 \mathbf{e}_{\mathbf{1}} \wedge \mathbf{e}_{2}$
1c. $9 \mathbf{e}_{\mathbf{1}} \wedge \mathbf{e}_{\mathbf{2}}$
1d. $8 \mathbf{e}_{\mathbf{1}} \wedge \mathbf{e}_{2}$
2. $A=\frac{1}{2}|\mathbf{u} \wedge \mathbf{v}|=\frac{1}{2}(8)=4$
3. $\frac{3 \sqrt{2}}{2}$
4. 5

