Geometric Algebra HW 1 (Wedge Product) MultiV 2021-22 / Dr. Kessner

- 1. For each of the following pairs of vectors \mathbf{u} and \mathbf{v} , find the wedge product $\mathbf{u} \wedge \mathbf{v}$. Draw the vectors and make sure your answer makes sense geometrically.
 - a. $\mathbf{u} = \begin{pmatrix} 2\\ 0 \end{pmatrix}, \mathbf{v} = \begin{pmatrix} 0\\ 1 \end{pmatrix}$ b. $\mathbf{u} = \begin{pmatrix} 0\\ 2 \end{pmatrix}, \mathbf{v} = \begin{pmatrix} 1\\ 0 \end{pmatrix}$ c. $\mathbf{u} = \begin{pmatrix} 3\\ 0 \end{pmatrix}, \mathbf{v} = \begin{pmatrix} 3\\ 3 \end{pmatrix}$ d. $\mathbf{u} = \begin{pmatrix} 3\\ 1 \end{pmatrix}, \mathbf{v} = \begin{pmatrix} 1\\ 3 \end{pmatrix}$
- 2. Find the area of the triangle determined by the two vectors $\mathbf{u} = \begin{pmatrix} 2 \\ 2 \end{pmatrix}$ and $\mathbf{v} = \begin{pmatrix} -2 \\ 2 \end{pmatrix}$. Find a general formula for the area of a triangle determined by two vectors \mathbf{u} and \mathbf{v} .
- 3. Find the distance from the point (2, 2) to the line 2x + 2y = 2.
- 4. Find the distance from the point (7,7) to the line 6x + 8y = 48.

Answers: 1a. $2\mathbf{e_1} \wedge \mathbf{e_2}$ 1b. $-2\mathbf{e_1} \wedge \mathbf{e_2}$ 1c. $9\mathbf{e_1} \wedge \mathbf{e_2}$ 1d. $8\mathbf{e_1} \wedge \mathbf{e_2}$ 2. $A = \frac{1}{2} |\mathbf{u} \wedge \mathbf{v}| = \frac{1}{2}(8) = 4$ 3. $\frac{3\sqrt{2}}{2}$ 4. 5