Geometric Algebra HW 2 (Geometric Product)

MultiV 2021-22 / Dr. Kessner

1. For each of the following vectors, find the inverse. Draw the unit circle on the plane, and draw each vector and its inverse.
a. $u=\binom{2}{0}$
b. $v=\binom{0}{3}$
c. $w=\binom{\frac{\sqrt{3}}{2}}{\frac{1}{2}}$
d. $x=\binom{\sqrt{3}}{1}$

Answers: $u^{-1}=\binom{\frac{1}{2}}{0}, v^{-1}=\binom{0}{\frac{1}{3}}, w^{-1}=w=\binom{\frac{\sqrt{3}}{2}}{\frac{1}{2}}, x^{-1}=\binom{\frac{\sqrt{3}}{4}}{\frac{1}{4}}$
2. Let $u=e_{1}=\binom{1}{0}$.

Let $v=\left(\cos \frac{\pi}{6}\right) e_{1}+\left(\sin \frac{\pi}{6}\right) e_{2}=\binom{\frac{\sqrt{3}}{2}}{\frac{1}{2}}$.

Show the following:
a. $u v=\left(\cos \frac{\pi}{6}\right)+\left(\sin \frac{\pi}{6}\right) e_{1} e_{2}=\frac{\sqrt{3}}{2}+\frac{1}{2} e_{1} e_{2}$ ($u v$ is a rotor representing a rotation by $\frac{\pi}{6}$.)
b. $v u=\frac{\sqrt{3}}{2}-\frac{1}{2} e_{1} e_{2}$
($v u$ is a rotor representing a rotation by $-\frac{\pi}{6}$.)
c. $v u v=v(u v)=(v u) v=\binom{\frac{1}{2}}{\frac{\sqrt{3}}{2}}$
(applying $u v$ on the right (or $v u$ on the left) rotates v by $\frac{\pi}{6}$)
d. $v v u=v(v u)=(u v) v=e_{1}=\binom{1}{0}$
(applying $v u$ on the right (or $u v$ on the left) rotates v by $-\frac{\pi}{6}$)
e. $u v u v=\frac{1}{2}+\frac{\sqrt{3}}{2} e_{1} e_{2}$
$\left(u v u v=(u v)^{2}\right.$ is a rotor representing rotation by $\left.\frac{\pi}{3}\right)$
f. $(v u)(u v)=1$
g. vuvuv $=e_{2}=\binom{0}{1}$
h. uvuvuv $=e_{1} e_{2}$
(uvuvuv $=(u v)^{3}$ a rotor representing rotation by $\frac{\pi}{2}$ (the unit bivector))

