Geometric Algebra HW 3 (Wedge Product in \mathbb{R}^3) MultiV 2021-22 / Dr. Kessner

- 1. For each of the following sets of vectors, find the following: $u \wedge v$, $u \times v$, $u \wedge v \wedge w$, and $(u \times v) \cdot w$.
 - a. u = 3e₁, v = 2e₂, w = 5e₃
 b. u = 3e₁ + e₂, v = 2e₁ + 2e₂, w = 5e₃
 c. u = 3e₁ + e₂, v = 2e₁ + 2e₂, w = 7e₁ + 11e₂ + 5e₃
- 2. Use the wedge product representation of the plane

$$(r - r_0) \wedge u \wedge v = 0$$

to solve the following problems.

a. Find the standard equation of the plane through the points $\begin{pmatrix} 10\\0\\0 \end{pmatrix}$, $\begin{pmatrix} 0\\10\\0 \end{pmatrix}$, and $\begin{pmatrix} 0\\0\\10 \end{pmatrix}$. Also find the distance from the plane to the origin.

b. Find the standard equation of the plane through the points

points
$$\begin{pmatrix} 4\\0\\0 \end{pmatrix}$$
, $\begin{pmatrix} 4\\4\\0 \end{pmatrix}$, and $\begin{pmatrix} 0\\0\\4 \end{pmatrix}$.

Also find the distance from the plane to $\begin{pmatrix} 0\\2\\0 \end{pmatrix}$.

Answers:

- 1a. $u \wedge v = 6e_1e_2$, $u \times v = 6e_3$, $u \wedge v \wedge w = 30e_1e_2e_3$, $(u \times v) \cdot w = 30$.
- 1b. $u \wedge v = 4e_1e_2$, $u \times v = 4e_3$, $u \wedge v \wedge w = 20e_1e_2e_3$, $(u \times v) \cdot w = 20$.
- 1c. $u \wedge v = 4e_1e_2$, $u \times v = 4e_3$, $u \wedge v \wedge w = 20e_1e_2e_3$, $(u \times v) \cdot w = 20$.
- 2a. $x + y + z = 10, d = \frac{10}{\sqrt{3}}$
- 2b. $x + z = 4, d = 2\sqrt{2}$