Geometric Algebra HW 4 (Geometric Product in \mathbb{R}^{3})
 MultiV 2021-22 / Dr. Kessner

1. Let $w=e_{1}+e_{3}$. Let $w^{\prime}=\left(e_{2} e_{1}\right) w\left(e_{1} e_{2}\right)$

Show that $w^{\prime}=-e_{1}+e_{3}$.
Draw w and w^{\prime}. Verify that w^{\prime} is the result of reflecting w in e_{1}, and then e_{2}. Also verify that this equivalent to rotation by π in the $e_{1} e_{2}$ plane.
2. Let $w=e_{1}+e_{3}$. Let $u=\frac{w}{\sqrt{2}}$ and $v=e_{1}$. Note that u and v are unit vectors in the $e_{1} e_{3}$ plane, and the angle between the two vectors is $\frac{\pi}{4}$.
Let $w^{\prime}=(v u) w(u v)$.
Show that $w^{\prime}=e_{1}-e_{3}$.
Draw w and w^{\prime}. Verify that w^{\prime} is the result of rotating w by $\frac{\pi}{2}$ in the $e_{1} e_{3}$ plane.
3. Let $w=e_{1}+e_{3}$. Find two vectors u and v to represent rotation by $-\frac{\pi}{4}$ in the $e_{2} e_{3}$ plane. (Clockwise 45° if you're on the positive e_{1} axis looking at the origin). Let $w^{\prime}=(v u) w(u v)$.
Show that $w^{\prime}=e_{1}+e_{2}$.

