Geometric Algebra Notes 1 (Wedge Product)

MultiV 2021-22 / Dr. Kessner

The unit circle

First we're going to think about the unit circle in \mathbb{R}^{2}, and change our notation as well.
We're going to call our unit vectors $e_{1}=\mathbf{i}=\binom{1}{0}$ and $e_{2}=\mathbf{j}=\binom{0}{1}$.
Let $u=\binom{\cos \theta}{\sin \theta}$ be a vector on the unit circle.

Observe that the projection of u on the x -axis is given by $\cos \theta$, and the area of the parallelogram determined by e_{1} and u is $\sin \theta$.
We can graph the area of the parallelogram as u moves around the unit circle. Notice that for $\theta \in[\pi, 2 \pi]$, the area is negative.

The wedge product

We have seen previously that $u=\binom{a}{b}$ and $v=\binom{c}{d}$, the area of the parallelogram is given by the determinant $\left|\begin{array}{ll}a & c \\ b & d\end{array}\right|=a d-b c$.

We define the wedge product $u \wedge v$ to be the directed (signed) area of the parallelogram determined by the two vectors, but with "units" (like meters ${ }^{2}$). We call this directed area a bivector.

We define $e 1 \wedge e 2$ to be the "unit bivector". It represents the directed area of the square determined by e_{1} and e_{2}. A general bivector will be a scalar multiple of $e_{1} \wedge e_{2}$. However, the actual shape of of the bivector is not specified: we can think of it as a square, or reshape it to a parallelogram, or an amorphous shape in the plane.

From the definition of the wedge product, we observe that:
$e_{1} \wedge e_{1}=0=e_{2} \wedge e_{2}$
$e_{2} \wedge e_{1}=-e_{1} \wedge e_{2}$.
The distributive property is not so obvious:
$w \wedge(u+v)=w \wedge u+w \wedge v$

Once we believe the distributive property, we can do FOIL.
Let $u=\binom{a}{b}=a e_{1}+b e_{2}$
and $v=\binom{c}{d}=c e_{1}+d e_{2}$.
Then

$$
\begin{aligned}
u \wedge v & =\left(a e_{1}+b e_{2}\right) \wedge\left(c e_{1}+d e_{2}\right) \\
& =\left(a e_{1} \wedge c e_{1}\right)+\left(a e_{1} \wedge d e_{2}\right)+\left(b e_{2} \wedge c e_{1}\right)+\left(b e_{2} \wedge d e_{2}\right) \\
& =a c\left(e_{1} \wedge e_{1}\right)++a d\left(e_{1} \wedge e_{2}\right)+b c\left(e_{2} \wedge e_{1}\right)+b d\left(e_{2} \wedge e_{2}\right) \\
& =(a d-b c)\left(e_{1} \wedge e_{2}\right)
\end{aligned}
$$

Notice that the determinant $a d-b c$ emerges as a consequence of the elementary properties of the wedge product.

Or we can use this as a shortcut for calculating the wedge product between two vectors:

$$
\begin{aligned}
u \wedge v & =\binom{a}{b} \wedge\binom{c}{d} \\
& =\left|\begin{array}{ll}
a & c \\
b & d
\end{array}\right|\left(e_{1} \wedge e_{2}\right) \\
& =(a d-b c)\left(e_{1} \wedge e_{2}\right)
\end{aligned}
$$

Here's an example:

$$
\begin{aligned}
\binom{3}{0} \wedge\binom{0}{2} & =\left|\begin{array}{ll}
3 & 0 \\
0 & 2
\end{array}\right|\left(e_{1} \wedge e_{2}\right) \\
& =6\left(e_{1} \wedge e_{2}\right)
\end{aligned}
$$

Application: Distance from a point to a line

Here's an application to a problem we have solved with the dot product and projection / rejection before: calculate the distance from a point to a line.
Suppose you have a line given by a point r_{0} and a vector v. Suppose also that you have a point r in the plane. To calculuate the distance from the point to the line, you can find the area of the parallelogram between the vectors $r-r_{0}$ and v, and divide by the base (the length of v). The height of the parallelogram is the perpendicular distance from the point to the line:
$d=\frac{\left|\left(r-r_{0}\right) \wedge v\right|}{|v|}$

Note that you could do this equivalently with the cross product, but the geometry is not as obvious.

