Unit 2 Group Work PCHA 2022-23 / Dr. Kessner

Name & Pledge:

No calculator! Have fun!

- 1. Evaluate the following:
 - a) $\tan \frac{7\pi}{6}$
 - b) $\sec \frac{4\pi}{3}$
 - c) $\cos(-\frac{7\pi}{6})$
 - d) $\cot \frac{99\pi}{4}$
 - e) $\cos^{-1}\sin(-\frac{\pi}{6})$
 - f) $\sin^{-1}\cos(-\frac{\pi}{6})$

2.	Write	down	all	the relevant	properties	(period,	amplitude,	shifts/scales,	asymptotes)	of the	following	trig
fur		, and	the	n graph by l	nand.							

$$f(x) = 3\sec 2\pi x$$

$$g(x) = -3\tan \pi x$$

3. Prove the identities:

$$(\sec \theta - \cos \theta)^2 + \sin^2 \theta = \tan^2 \theta$$

$$\frac{\sin\theta}{\sec\theta-\cos\theta}=\cot\theta$$

4. Use a sum formula to find $\cos(195^{\circ})$.

Derive the following half angle formula from the relevant double angle formula: $\frac{1}{2} \int_{\mathbb{R}^{n}} \left(\frac{1}{2} \int_{\mathbb{R}^{n}$

$$\cos u = \pm \sqrt{\frac{1 + \cos 2u}{2}}$$

Use the half angle formula above to find $\cos(195^{\circ})$.

5. Solve the following triangle: $a=10,\,c=10\sqrt{3},\,B=30^{\circ}.$

Solve the following triangle: $a=10,\,b=10,\,C=60^{\circ}.$