Group Work Unit 2
PCHA 2021-22 / Dr. Kessner
Name:


Partner(s):

You can use any materials from class, but no other online resources. No calculator except where indicated. Have fun!

1. Evaluate the following:
a) $\sec \frac{2 \pi}{3}=2$
b) $\csc \left(-\frac{5 \pi}{6}\right)=-\mathbb{Z}$

c) $\cos ^{-1}(\underbrace{\cos \frac{2 \pi}{3}}_{-1 / 2})=\frac{2 \pi}{3}$
d) $\sin ^{-1}(\underbrace{\sin \left(-\frac{5 \pi}{6}\right)}_{-1 / 2})=\frac{-\pi}{6}$
e) $\tan ^{-1}(\underbrace{\left.\cot \left(-\frac{3 \pi}{4}\right)\right)}_{1}=\pi / 4$
f) $\tan (\sin ^{-1}(\underbrace{\left(\frac{\left.\cos \frac{\pi}{2}\right)}{0}\right.}_{0})=0$

2. Write down all the relevant properties (period, amplitude, shifts/scales, asymptotes) of the following trig functions, and then graph by hand.
$f(x)=15-10 \sin \left(\frac{\pi}{8} x-\frac{\pi}{2}\right)$


3. You model the motion of a spider sitting on the wheel of a stationary bike. The spider starts $(t=0)$ at the 3 o'clock position and travels clockwise with a constant angular speed, taking 6 seconds for a full revolution. The wheel's lowest point is 5 cm above the ground, and it's radius is 20 cm . Graph both $x(t)$ and $y(t)$. Find equations for both $x(t)$ and $y(t)$.



Calculate the position of the spider at $t=0, t=2, t=3, t=4$.


$$
\begin{aligned}
& t=0, t=2, t=3, t=4 \\
& t=0 \quad x(0)=20 \cos 0=20 \\
& y(0)=25-20 \sin (0)=25 \\
& t=2 \quad x(2)=20 \cos \frac{2 \pi}{3}=-10 \\
& y(2)=25-20 \sin \frac{2 \pi}{3}=25-20 \sqrt{3}=25-10 \sqrt{3} \\
& x=30 \\
& x(3)=20 \cos =-20 \\
& y(3)=25-20 \sin \pi=25 \\
& x(4)=20 \cos \frac{4 \pi}{3}=-10 \\
& y(4)=25-20 \sin \frac{4 \pi}{3}=25+10 \sqrt{3} \\
& t=4
\end{aligned}
$$

4. Prove the identities:

$$
\begin{aligned}
& \frac{1}{\frac{1}{\csc ^{2} x(1-\cos x)}=1+\cos x} \\
& \left.\begin{aligned}
\frac{1}{\csc ^{2} x(1-\cos x)} & =\frac{\sin ^{2} x}{1-\cos x} \\
& =\frac{1-\cos ^{2} x}{1-\cos x} \\
& =\frac{(1-\cos x)(1+\cos x)}{1-\cos x} \\
& =1+\cos x
\end{aligned} \right\rvert\, \begin{array}{l}
\text { Thisderiva } \\
\text { trom Kati }
\end{array} \\
& \text { or d6: } \frac{1}{\csc ^{2} x(1-\cos x)}=\frac{1}{\csc ^{2} x(1-\cos x)} \frac{1+\cos x}{1+\cos x}
\end{aligned}
$$

$(\cot x+\tan x)^{2}=\sec ^{2} x+\csc ^{2} x$

$$
\begin{aligned}
(\cot x+\tan x)^{2} & =\cot ^{2} x+2 \cdot \cot x \tan x+\tan ^{2} x \\
& =\left(\cot ^{2} x+1\right)+\left(1+\tan ^{2} x\right) \\
& =\csc ^{2} x+\sec ^{2} x
\end{aligned}
$$

5. Find $\sin \left(75^{\circ}\right)$ using a sum angle formula.

$$
\begin{aligned}
\sin (u+v) & =\sin u \cos v+\cos u \sin v \\
\sin 75^{\circ} & =\sin \left(30^{\circ}+45^{\circ}\right) \\
& =\sin 30^{\circ} \cos 45^{\circ}+\cos 30^{\circ} \sin 45^{\circ} \\
& =\frac{1}{2} \frac{\sqrt{2}}{2}+\frac{\sqrt{3}}{2} \cdot \frac{\sqrt{2}}{2} \\
& =\frac{\sqrt{2}+\sqrt{6}}{4}
\end{aligned}
$$

Derive the following half angle formula from the relevant double angle formula:

$$
\begin{aligned}
& \cos 2 u=\cos ^{2} u-\sin ^{2} u \\
& \cos 2 u=1-2 \sin ^{2} u \\
& 2 \sin ^{2} u=1-\cos 2 u \\
& \sin ^{2} u=\frac{1-\cos 2 u}{2} \\
& \sin u= \pm \sqrt{\frac{1-\cos 2 u}{2}} \\
& \hline
\end{aligned}
$$

Use the half angle formula above to find $\sin \left(75^{\circ}\right)$.

$$
\begin{aligned}
& \begin{aligned}
\sin 75^{\circ}= & +\sqrt{\frac{1-\cos 150^{\circ}}{2}}
\end{aligned}=\sqrt{\frac{1+\sqrt{3 / 2}}{2}} \\
& \text { quadrat } \\
&=\frac{1}{2} \sqrt{2+\sqrt{3}}
\end{aligned}
$$

Challenge: Show that the two expressions you found for $\sin \left(75^{\circ}\right)$ are equal.
6. Solve the following triangle. Calculator OK


$$
\frac{\sin B}{b}=\frac{\sin A}{a}
$$

$$
\sin B=\frac{b \sin A}{a}
$$

$$
=\frac{10 \sin 60^{\circ}}{q}
$$

$$
=\frac{10}{9} \frac{\sqrt{3}}{2}
$$

$$
\approx .96275
$$

$$
\begin{aligned}
& B_{1} \approx 74.2^{\circ} \text { or } 105.8^{\circ} \\
& C_{1} \approx 45.8^{\circ} \quad C_{2} \approx 14.2^{\circ}
\end{aligned}
$$

$$
\begin{aligned}
& c_{1}^{2} \approx a^{2}+b^{2}-2 a b \cos C_{1} \\
& c_{1} \approx 55.5 \\
& \approx 7.45
\end{aligned}
$$

Solve the following triangle. No calculator!


$$
\begin{aligned}
& c^{2}= a^{2}+b^{2}-2 a b \cos C \\
&= 10^{2}+10^{2}-2 \cdot 10 \cdot 10 \cdot \cos 60^{\circ} \\
&= 100+100-200\left(\frac{1}{2}\right) \\
&= 100 \\
& c=10 \\
& \frac{\sin A}{a}=\frac{\sin C}{c} \Rightarrow \sin A=\frac{a \sin C}{c} \\
&=\frac{10 \cdot \sin 60^{\circ}}{10} \\
& \Rightarrow A=60^{\circ} \\
&\left(\text { similar: } B=60^{\circ}\right)
\end{aligned}
$$

