Name / Pledge:

Partner(s):

You can use your notes and/or textbook. No calculator. Have fun!

1. Suppose you have the following vectors:

$$
\begin{aligned}
& \vec{u}=\langle 2,2 \sqrt{3}\rangle=4\left\langle\frac{1}{2}, \frac{\sqrt{3}}{2}\right\rangle \\
& \vec{v}=\langle 3 \sqrt{3},-3\rangle=6\left\langle\frac{\sqrt{3}}{2},-\frac{1}{2}\right\rangle \\
& \vec{w}=\langle 3,0\rangle=3\langle 1,0\rangle \\
&\left.-\frac{1}{2}\right\rangle
\end{aligned}
$$

Calculate the following:
a) $|\vec{u}| \quad 4$
b) $|\vec{v}| \quad 6$
c) Unit vector in the direction of $\vec{v} \cdot\left\langle\sqrt{\frac{3}{2}},-\frac{1}{2}\right\rangle$
d) Angle between \vec{u} and \vec{v}.
$T / 2$
e) Angle between \vec{u} and \vec{w}.

$$
\pi / 3
$$

2. a) Parametrize the line segment from $(1,2)$ to $(3,6)$.

$$
\binom{x}{y}=\binom{1}{2}+t\binom{2}{4}
$$

b) Parametrize the line segment from $(3,6)$ to $(1,2)$ (same points, opposite direction).

$$
\binom{x}{y}=\binom{3}{6}+t\binom{-2}{-4}
$$

c) Parametrize the circle with center $(3,4)$ and radius 5 .

$$
\binom{x}{y}=\binom{3}{4}+\binom{5 \cot t}{5 \operatorname{sent}}
$$

d) Parametrize the same circle, but make the period $=6$.

$$
\binom{x}{y}=\binom{3}{4}+\binom{5 \cos \frac{2 \pi}{6} t}{5 \sin \frac{2 \pi}{6} t}
$$

3. Find all polar coordinates of the following (rectangular) points:
a) $(1,1)$

$\begin{array}{ll}\text { b) }(-3 \sqrt{3}, 3)=6\left\langle-\frac{\sqrt{3}}{7}, \frac{1}{2}\right\rangle & \left(6, \frac{5 \pi}{6}+2 \pi k\right) \\ k & \\ & \\ & \end{array}$
Convert the following equations from rectangular to polar coordinates:
c) $3 x+4 y=5$

$$
\begin{aligned}
& 3 \cos \theta+4 r \sin \theta=5 \\
& r=\frac{5}{3 \cos \theta+4 \sin \theta}
\end{aligned}
$$

d) $x^{2}+y^{2}=25$

$$
r=5
$$

Convert from polar to rectangular:
e) $r=-5 \sin \theta$

$$
\begin{aligned}
& r^{2}-5 r \sin \theta \\
& x^{2}+y^{2}+5 y=0 \\
& x^{2}+\left(y+\frac{5}{2}\right)^{2}=\left(\frac{5}{2}\right)^{2}
\end{aligned}
$$

f) $r=5 \csc \theta$

$$
\begin{gathered}
r \sin \theta=5 \\
y=5
\end{gathered}
$$

,
4. Analyze the graph of the polar function $r=1-2 \sin 2 \theta$:

1) Find the max $|r|$ values and θ values where they occur.
2) State and prove any symmetry relations.
(1)
3) Challenge: What is going on at $\frac{\pi}{4}$ and $\frac{5 \pi}{4}$?

$$
\begin{aligned}
\text { max ir }= & =\text { max }|1-2 \sin 2 \theta| \\
= & 3 \text { chen } \sin 2 \theta=-1 \\
& 2 \theta=\frac{3 \pi}{2}+2 \pi k \\
& \theta=\frac{3 \pi}{4}+\pi k
\end{aligned}
$$

(2) $10 x$-axis or y-axis symmetry (by inspection of graph)

$$
\begin{aligned}
& (-r, \theta) \text { : } \\
& -r \stackrel{?}{=} 1-2 \sin 2 \theta X \\
& \text { origin. } \\
& \text { origin symmetry: } \\
& \begin{aligned}
&(r, \theta+\pi): ? \\
&= 1-2 \sin 2(\theta+\pi) \\
&
\end{aligned} \\
& =1-2 \sin (2 \theta+2 \pi) \\
& =1-2 \sin 2 \theta- \\
& \text { (3) } r=-1 \text { ot } \pi / 4, s \pi / 4 \\
& \tau_{\text {this is a min for } r} \text {. } \\
& \text { ac a local mex for }|r| \\
& \text { curing at } \theta=\pi / 4,5 \pi / 4
\end{aligned}
$$

5. For each of the following 2×2 matrices, determine whether it is invertible, and if so, find the inverse matrix and the determinant of the inverse.

$$
\begin{aligned}
& A=\left(\begin{array}{ll}
3 & 0 \\
0
\end{array}\right) \quad|A|=9 \quad A^{-1}=\frac{1}{9}\left(\begin{array}{l}
3 \\
0 \\
0
\end{array}\right)=\frac{1}{3} t \quad \operatorname{det} A^{-1}=\frac{1}{9}
\end{aligned}
$$

$$
\begin{aligned}
& c=\left(\begin{array}{cc}
\binom{2}{2}
\end{array} \quad|c|=-4 \quad c^{-1}=-\frac{1}{4}\left(\begin{array}{cc}
-0^{-2} \\
-2 & 0
\end{array}\right) \quad d t c^{-1}=-\frac{1}{4}\right. \\
& =\binom{01 / 2}{1 / 2} \\
& D=\left(\begin{array}{cc}
1 & 2 \\
2 & 2
\end{array}\right) \quad|D|=0 \text { not iventible }
\end{aligned}
$$

Let $E=\left(\begin{array}{ll}6 & 5 \\ 5 & 4\end{array}\right)$. Find E^{-1}. Verify that $E E^{-1}=I$.

$$
\begin{aligned}
|E|=-1 \quad E^{-1} & =-\left(\begin{array}{cc}
4 & -5 \\
-5 & 6
\end{array}\right) \\
& =\left(\begin{array}{cc}
-4 & 5 \\
5 & -6
\end{array}\right)
\end{aligned}
$$

Use the inverse matrix you found to solve the following linear systems:

$$
\begin{aligned}
& \begin{array}{l}
6 x+5 y=1 \\
5 x+4 y=0
\end{array} \quad\binom{x}{y}=E^{-1}\binom{1}{0}=\left(\begin{array}{cc}
-4 & 5 \\
5 & -6
\end{array}\right)\binom{1}{0}=\binom{-4}{5} \\
& \begin{array}{l}
6 x+5 y=0 \\
5 x+4 y=1
\end{array} \quad\binom{x}{y}=\binom{5}{-6}
\end{aligned}
$$

6. Consider the following system of linear equations:

$$
\begin{aligned}
x+3 z & =4 \\
-x-2 z & =-3 \\
y-2 z & =-1
\end{aligned}
$$

a. Write the linear system as a matrix equation
b. Calculate the determinant of the matrix to verify that the matrix is invertible.

$$
\begin{aligned}
\operatorname{det} 4 & \left.=\left|\begin{array}{ll}
0 & -2 \\
1 & -2
\end{array}\right|-0|1+3| \begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array} \right\rvert\, \\
& =2-3 \\
& =-1 \\
& \text { muertible }
\end{aligned}
$$

$$
\begin{aligned}
& \text { c. Find the inverse matrix and use it to solve the system. } \\
& \left(\begin{array}{ccc|ccc}
1 & 0 & 1 & 0 & 0 \\
-1 & 0 & -2 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
0 & 1 & -2 & 0 & 0 & 1
\end{array}\right) \\
& \begin{array}{l}
\left(\begin{array}{cccccc}
R_{1}+R_{2} & & & & \\
1 & 0 & 3 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 & 1 & 0 \\
0 & 1 & -2 & 0 & 0 & 1
\end{array}\right) \\
1 R_{23}
\end{array} \\
& A^{-1}\left(\begin{array}{c}
4 \\
-3 \\
-1
\end{array}\right)=\left(\begin{array}{ccc}
-2 & -3 & 0 \\
2 & 2 & 1 \\
1 & 1 & 0
\end{array}\right)\left(\begin{array}{c}
4 \\
-3 \\
-3
\end{array}\right) \\
& =\left(\begin{array}{c}
-8+9 \\
-6-6 \\
4-3
\end{array}\right)=\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right)
\end{aligned}
$$

