Unit 4 Group Work Practice PCHA 2021-22 / Dr. Kessner


No calculator! Have fun!

1. Let

$$
f(x)= \begin{cases}x & \text { if } x<0 \\ 2-(x-1)^{2} & \text { if } x \geq 0\end{cases}
$$

a) Sketch the graph of $f(x)$.

b) On what intervals is $f$ increasing and/or decreasing? Is $f$ bounded? Does it have any local or global maxima or minima?

$$
\begin{array}{ll}
\text { Increasing on }(-\infty, 1] & \text { bounded above } \\
\text { decreasing on }[1, \infty) & \text { local \& glover max at } x=1
\end{array}
$$

c) Does $f$ have any discontinuities? Where, and what type?

$$
\text { jump discontinuity at } x=0
$$

d) Describe the end behavior of $f$ using limits.

$$
\begin{aligned}
& \lim _{x \rightarrow \infty} f(x)=-\infty \\
& \lim _{x \rightarrow-\infty} f(x)=-\infty
\end{aligned}
$$

2. Consider the same function from the previous problem.

$$
f(x)= \begin{cases}x & \text { if } x<0 \\ -(x-1)^{2} & \text { if } x \geq 0\end{cases}
$$

Sketch the graphs of the following transformed functions:

- $p(x)=f(-x)$
- $q(x)=f(|x|)$
- $r(x)=|f(|x|)|$
- $s(x)=|f(-x)|$
- $t(x)=-f(-|x|)$



$$
f(x)=-f(-|x|)
$$



3. Factor the following polynomial completely, both over $\mathbb{R}$ (as a product of real linear and irreducible quadratic factors) and over $\mathbb{C}$ (as a product of complex linear factors). Sketch the graph of the function.

$$
\begin{aligned}
& p(x)=-2 x^{3}+7 x^{2}+17 x-10 \\
& \text { potantialiationdzano: } \pm \frac{1,2,5,10}{1,2} \\
& p(1)=-2+7+17-10 \neq 0 \\
& p(-1)=+2+7-17-10 \neq 0 \\
& p(2)=-16+28+34-10 \neq 0 \\
& p(-2)=16+28-34-10=0 \\
& \text {-2) }-2717-10 \\
& \frac{4-2210}{-211-5101} \\
& p(x)=(x+2)\left(-2 x^{2}+11 x-5\right) \\
& \begin{array}{l}
\text { - zeros at } x=\frac{-6 \pm \sqrt{b^{2} 4 / a c}}{2 a} \\
\text { or factor- }-\left(2 x^{2}-11 x+5\right) \\
-(2 x-1)(x-5)
\end{array} \\
& =\frac{-11 \pm 9}{-4} \\
& \Rightarrow p(x)=-(x+2)(2 x-1)(x-5) \\
& =5, \frac{1}{2}
\end{aligned}
$$

4. Factor the following polynomial completely, both over $\mathbb{R}$ (as a product of real linear and irreducible quadratic factors) and over $\mathbb{C}$ (as a product of complex linear factors). Sketch the graph of the function. A little bird tells you that $2+3 i$ is a zero.

$$
q(x)=x^{4}-4 x^{3}+10 x^{2}+12 x-39
$$

2+3i/1 $-41012-39$

$$
\begin{aligned}
& (2+3 i)(-2+3 i) \\
& =-4-9=-13 \\
& (2+3 i)(6-9 i) \\
& =12+27=39
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow q(x)=(x-(2+3 i))(x-(2-3 i))\left(x^{2}-3\right) \\
&=(x-(2+3 i))(x-(2-3 i))(x+\sqrt{3})(x-\sqrt{3}) \text { ore } \mathbb{C} \\
&=\left(x^{2}-4 x+13\right)(x+\sqrt{3})(x-\sqrt{3}) \text { over } \mathbb{R} \\
& 2 \text { real (irrational) zeros }
\end{aligned}
$$

end behavior:

$$
\lim _{x \rightarrow \pm \infty} q(x)=\infty
$$



$$
y \text {-utarept -39 }
$$

probably not local min
5. Sketch the graph of the following rational function:

$$
\begin{aligned}
r(x) & =\frac{x^{2}-3 x+2}{\left(x^{2}-4 x+4\right)(x-3)} \\
& =\frac{(x-2)(x-1)}{(x-2)^{2}(x-3)} \\
& =\frac{x-1}{(x-2)(x-3)}(f x \neq 2)
\end{aligned}
$$



|  |  | 1 | 2 | 3 |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $x-1$ | - | 0 | + | + | + | + | + |
| $x-2$ | - | - | - | 0 | + | + | + |
| $x-3$ | - | - | - | - | - | 0 | + |
| $r(x)$ | - | 0 | + | $X$ | $-X$ | + |  |



