Unit 6 Group Work
PCHA 2021-22 / Dr. Kessner

No Calculator

1. Evaluate:
a. $\binom{7}{1}=\mathcal{F}$
b. $\binom{7}{2}=\frac{7 \cdot 6}{\mathbb{2}}=21$
c. $\binom{7}{3}=\frac{7 \cdot 6 \cdot 5}{3!}=35$
d. $\binom{7}{4}=\binom{7}{3}=35$
e. $\binom{12}{2}=\frac{12-I I}{2}=66$
f. $\binom{12}{3}=\frac{12 \cdot 1 / \cdot 10}{3!}=220$
g. $\binom{12}{9}=\binom{12}{3}=220$
h. $\binom{12}{10}=\binom{12}{2}=66$
i. $\binom{100}{99}=\binom{100}{1}=100$
j. $\binom{2000}{2}=\frac{2000 \cdot 1999}{2}=1999000$
2. Let $\left\{a_{k}\right\}_{k=1}^{\infty}=\left\{\frac{1}{2},-\frac{1}{4}, \frac{1}{8},-\frac{1}{16}, \cdots\right\}$.
a. What type of sequence is this? Write recursive and explicit formulas for a_{k}.

$$
\begin{aligned}
& a_{1+1}=-\frac{1}{2} a_{x} \quad \text { recursive } \\
& a_{n}=a_{1} \cdot r^{n-1} \\
& =\left(\frac{1}{2}\right)\left(-\frac{1}{2}\right)^{n-1}
\end{aligned}
$$

b. Let S_{n} be the $n^{\text {th }}$ partial sum of the sequence $\left\{a_{k}\right\}$. Express S_{n} (for this particular sequence) in summation notation.

$$
\begin{aligned}
S_{n} & =\sum_{k=1}^{n} a_{k} \\
& =\sum_{k=1}^{n} \frac{1}{2}\left(-\frac{1}{2}\right)^{k-1}
\end{aligned}
$$

c. Write a formula for the actual sum S_{n} (for this particular sequence).

$$
\begin{aligned}
S_{n} & =\frac{a\left(1-r^{n}\right)}{1-r} \\
& =\frac{\frac{1}{2}\left(1-\left(-\frac{1}{2}\right)^{n}\right)}{1-\left(-\frac{1}{2}\right)} \\
& =\frac{1}{3}\left(1-\left(-\frac{1}{2}\right)^{n}\right)
\end{aligned}
$$

d. What is the sum of the infinite series $\frac{1}{2}-\frac{1}{4}+\frac{1}{8}-\frac{1}{16}+\cdots$? (Surprising?) bechance $\left(-\frac{1}{2}\right)^{n} \rightarrow 0$ $2 S N \rightarrow \infty$

$$
\begin{aligned}
S_{\infty}=\frac{a}{1-r} & =\frac{\frac{1}{2}}{1-\left(-\frac{1}{3}\right)} \\
& =\frac{1 / 2}{3 / 2} \\
& =\frac{1}{3}
\end{aligned}
$$

3. Expand $\left(2-x^{2}\right)^{4}$.

$$
\begin{aligned}
\left(2-x^{2}\right)^{4} & =2^{4}+4 \cdot 2^{3}\left(-x^{2}\right)+6 \cdot 2^{2}\left(-x^{2}\right)^{2}+4\left(2^{1}\right)(-x)^{3}+\left(-x^{2}\right)^{4} \\
& =16-32 x^{2}+24 x^{4}-8 x^{6}+x^{8}
\end{aligned}
$$

Find the x^{6} term in $\left(2-x^{2}\right)^{5}$.

$$
\begin{aligned}
\binom{5}{2}(2)^{2}\left(-x^{2}\right)^{3} & =-10 \cdot 4 x^{6} \\
& =-40 x^{6}
\end{aligned}
$$

Find the x^{8} term in $\left(2-x^{2}\right)^{5}$.

$$
(5)(2)^{\prime}\left(-x^{2}\right)^{4}=10 x^{8}
$$

4. Suppose you have 7 red and 3 white marbles in a bag. You pick 6 of the marbles from the bag (without replacement).
a. What is the probability that you pick 6 red marbles?

$$
P(6 \mathrm{rel})=\frac{\binom{7}{6}\left(\frac{3}{0}\right)}{\binom{(10)}{6}}=\frac{7}{210}=\frac{1}{30}
$$

b. What is the probability that you pick 4 red (and 2 white marbles)?

$$
\binom{7}{4}=\binom{7}{3}=\frac{7 \cdot 6 \cdot 5}{3!}=3
$$

c. What is the probability that you pick 2 red marbles?

$$
P(2 n d)=0
$$

5. Suppose you have 50 black and 50 white marbles in a bag. You sample 5 marbles with replacement (in other words, you pick a marble, look at it, and put it back, 5 times). Let B be the number of times you pick a black marble. Calculate all of the 6 probabilities $P(B=0), P(B=1), \ldots, P(B=5)$. Hint: You only have

$$
\begin{aligned}
& \text { to calculate hall of these. Verify that } 1=\sum_{k=0}^{5} P(B=k) \\
& P(B=0)=\left(\begin{array}{l}
5 \\
5
\end{array}\left(\frac{1}{2}\right)^{0}\left(\frac{1}{2}\right)^{5}=\frac{1}{32}=P(B=5)\right. \\
& \left.P(B=1)=\binom{5}{1} \frac{1}{2}\right)^{1}\left(\frac{1}{2}\right)^{4}=\frac{5}{32}=P(B=4) \\
& P(B=2)=\binom{5}{2}\left(\frac{1}{2}\right)^{2}\left(\frac{1}{2}\right)^{3}=\frac{10}{32}=P(B=3 \\
& \text { checle: } \quad \sum_{k=0}^{5} P(B=k)=\frac{1}{32}+\frac{5}{32}+\frac{10}{32}+\frac{10}{32}+\frac{5}{32}+\frac{1}{32}=1
\end{aligned}
$$

binonal

Now suppose you have 75 black and 25 white marbles in the bag. You again sample 5 marbles with replacement.
Calculate the probabilities $P(B=0), P(B=1), \ldots, P(B=5)$ and again verify that $1=\sum_{k=0}^{5} P(B=k)$.

$$
\begin{aligned}
& P(B=0)=\binom{5}{6}\left(\frac{3}{4}\right)^{0}\left(\frac{1}{4}\right)^{5}=\frac{1}{1024} \\
& P(B=1)=(5)\left(\frac{3}{4}\right)^{\prime}\left(\frac{1}{4}\right)^{4}=\frac{15}{1024} \\
& P(B=2)=\left(\frac{5}{2}\right)\left(\frac{3}{4}\right)^{2}\left(\frac{1}{4}\right)^{3}=\frac{90}{1024} \\
& P(B=3)=\left(\frac{5}{3}\right)\left(\frac{3}{4}\right)^{3}\left(\frac{1}{4}\right)^{2}=\frac{200}{1024} \\
& P(B=4)=\left(\frac{5}{4}\right)\left(\frac{3}{4}\right)^{4}\left(\frac{1}{4}\right)^{1}=\frac{405}{1024} \\
& P(B=5)=\left(\frac{5}{5}\right)\left(\frac{3}{4}\right)^{5}\left(\frac{1}{4}\right)^{0}=\frac{243}{1024}
\end{aligned}
$$

$$
\begin{aligned}
& \left(\frac{1}{4}\right)^{5}=\frac{1}{210}=\frac{1}{1024} \\
& \left(\frac{5}{2}\right)=\frac{5 \cdot 4}{2}=10=\left(\frac{5}{3}\right)
\end{aligned}
$$

$\begin{aligned} & \text { check: } 1+15+90+270+405+243 \\ &=1024\end{aligned}$ $=1024$

