Unit 9 Group Work 2
PCHA 2021-22 / Dr. Kessner
No calculator! Have fun!

1. Evaluate the following limits, evaluating left and right side limits where applicable.
a. $\lim _{x \rightarrow 0} x \csc \frac{x}{3}$
b. $\lim _{x \rightarrow 0} x \sin \frac{x}{3}$
c. $\lim _{x \rightarrow \infty} 10^{-x} \sin \frac{x}{3}$
d. $\lim _{x \rightarrow 0} \cot \frac{x}{3}$
e. $\lim _{x \rightarrow 0} \frac{\sin (\pi+x)-\sin (\pi)}{x}$.
2. a. Find the derivative of $f(x)=\cos 2 x$ using a limit definition. Recall that $\lim _{x \rightarrow 0} \frac{\sin x}{x}=1$ and $\lim _{x \rightarrow 0} \frac{\cos x-1}{x}=0$.
Hint: Use the sum angle formula $\cos (u+v)=\cos u \cos v-\sin u \sin v$, but don't use the double angle formula.
b. Find the derivative of $g(x)=\frac{1}{x}$ using the limit definition:

$$
g^{\prime}(a)=\lim _{x \rightarrow a} \frac{g(x)-g(a)}{x-a}
$$

3. Using the various rules for differentiation, calculate the derivatives of the following functions.
a. $p(x)=e^{\sin x}$
b. $q(x)=\sin ^{2} x+\cos ^{2} x \quad$ (Practice using power and chain rules!)
c. $r(x)=\sin ^{4} x-\cos ^{4} x$
d. $s(x)=-\cos 2 x \quad$ (Notice that $s^{\prime}(x)=r^{\prime}(x)$. Challenge: verify that $r(x)=s(x)$.)
e. $t(x)=2^{\sin x^{2}}$
4. Consider the curve $x=10^{y}$.
a. Sketch the graph of this curve.
b. Find $\frac{d y}{d x}$ (in terms of x and y) by implicit differentiation.
c. Solve for y in terms of x.
d. Find $\frac{d y}{d x}$ using the expression for y you found above.
e. Verify that these two formulas for $\frac{d y}{d x}$ are the same.
5. Suppose you have 128 kg of ${ }^{14} C$, which has a half-life of 5730 years.
a. Write an equation to model the amount $A(t)$ of ${ }^{14} C$ as a function of time.
b. Find the average rate of change in the amount over the first 5 half-lives ($5 \cdot 5730$ years). Use a calculator to get approximate values.
c. Find $A^{\prime}(t)$.
d. Calculate the rate of change (exact) at $t=0, t=2 \cdot 5730$, and $t=5 \cdot 5730$ years. Use a calculator to get approximate values.
6.

Model the motion of a Ferris wheel with diamter 8 m , sitting 2 m off the ground. Suppose you start $(t=0)$ at the 9 o'clock position (furthest left on diagram), traveling counter-clockwise, and that the period is 8 minutes.
a. Write parametric equations $x(t)$ and $y(t)$ to model the position as a function of time.
b. Find $x^{\prime}(t)$ and $y^{\prime}(t)$.
c. Evaluate $x^{\prime}(t)$ and $y^{\prime}(t)$ at the rightmost position.
d. Find $x^{\prime \prime}(t)$ and $y^{\prime \prime}(t)$.
e. Evaluate $x^{\prime \prime}(t)$ and $y^{\prime \prime}(t)$ at the rightmost position.

