Unit 9 Group Work 2
PCHA 2021-22 / Dr. Kessner
No calculator! Have fun!

1. Evaluate the following limits, evaluating left and right side limits where applicable.
a. $\lim _{x \rightarrow 0} x \csc \frac{x}{3}=\lim _{x \rightarrow 0}\left(\frac{x}{\operatorname{sic}\left(\frac{x}{3}\right)} \cdot \frac{1 / 3}{1 / 3}=3\right.$
b. $\lim _{x \rightarrow 0} x \sin \frac{x}{3}=0$
c. $\lim _{x \rightarrow \infty} 10^{-x} \sin \frac{x}{3}=0$
d. $\lim _{x \rightarrow 0} \cot \frac{x}{3}$

e. $\lim _{x \rightarrow 0} \frac{\sin (\pi+x)-\sin (\pi)}{x}=\frac{d}{d x}(\sin x)(\pi)$

$$
=\cos \pi
$$

$$
=-1
$$

2. a. Find the derivative of $f(x)=\cos 2 x$ using a limit definition. Recall that $\lim _{x \rightarrow 0} \frac{\sin x}{x}=1$ and $\lim _{x \rightarrow 0} \frac{\cos x-1}{x}=0$.

$$
\begin{aligned}
& f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{(x)=2}{h} \\
& =\lim _{a \rightarrow 0} \frac{\cos (2(2 x+h))-\cos 2 x}{a} \\
& =\lim _{h \rightarrow 0}(\cos 2 x \cos 2 h-\sin 2 x \sin 2 h-\cos 2 x) \frac{1}{h} \\
& \text { = councos } \\
& -\sin u \sin u \\
& =\lim _{a \rightarrow 0}[\cos 2 x(\underset{\rightarrow 0}{ } \xrightarrow{(\sin h-1})-\sin 2 \\
& =-2 \sin 2 x
\end{aligned}
$$

b. Find the derivative of $g(x)=\frac{1}{x}$ using the limit definition:

3. Using the various rules for differentiation, calculate the derivatives of the following functions.
a. $p(x)=e^{\sin x}$

$$
p^{\prime}(x)=e^{\sin x}(\cos x)
$$

b. $q(x)=\sin ^{2} x+\cos ^{2} x \quad$ (Practice using power and chain rules!)

$$
\begin{aligned}
g^{\prime}(x) & =2 \sin x(\cos x)+2 \cos x(-\sin x) \\
& =0
\end{aligned}
$$

$$
\begin{aligned}
& \operatorname{cor}^{(r)}(x) \sin ^{4} x-\cos ^{4} x \\
&=4 \sin ^{3} x \cos x-4 \cos ^{3} x(-\sin x) \\
&=4 \sin ^{3} x \cos x+4 \cos ^{\frac{3}{3}} \sin x \\
&=4 \sin ^{2} x \cos x\left(\cos ^{2} x+\sin ^{2} x\right) \\
&=4 \cos x
\end{aligned}
$$

d. $s(x)=-\cos 2 x \quad$ (Notice that $s^{\prime}(x)=r^{\prime}(x)$. Challenge: verify that $r(x)=s(x)$.)

$$
\begin{array}{r|r|}
S^{\prime}(x)=+2 \sin 2 x \\
(=4 \sin 2 x \cos 2 x) & \left.\begin{array}{rl}
\sin ^{4} x-\cos ^{2} x \\
& =\left(\sin ^{2} x-\cos ^{2} x\right) \\
& =\left(\sin ^{2} x+\cos ^{2} x\right) \\
& =-\cos 2 x
\end{array}\right)
\end{array}
$$

e. $t(x)=2^{\sin x^{2}}$

$$
t^{\prime}(x)=2^{\sin x^{2}} \ln 2\left(\cos x^{2}\right)(2 x)
$$

4. Consider the curve $x=10^{y}$.
a. Sketch the graph of this curve.

b. Find $\frac{d y}{d x}$ (in terms of x and y) by implicit differentiation.

$$
\begin{aligned}
& x=10^{9} \\
& 1=10^{5} \ln 10 \frac{\mathrm{dy}}{\mathrm{dx}}
\end{aligned}
$$

$$
\frac{y_{1}}{2 \times 1}=\frac{1}{10^{2} \ln 10}
$$

c. Solve for y in terms of x.

$$
y=\log _{0} x
$$

d. Find $\frac{d y}{d x}$ using the expression for y you found above.

$$
\frac{d y}{d x}=\frac{1}{x \operatorname{lo} 10}
$$

e. Verify that these two formulas for $\frac{d y}{d x}$ are the same.

$$
\begin{aligned}
& x=100^{\prime \prime} \\
& \Rightarrow \frac{1}{y_{1}}=\frac{1}{10 \ln \ln 0}=\frac{1}{x \operatorname{lec} 10}
\end{aligned}
$$

5. Suppose you have 128 kg of ${ }^{14} C$, which has a half-life of 5730 years.
a. Write an equation to model the amount $A(t)$ of ${ }^{14} C$ as a function of time.

$$
A(t)=128\left(\frac{1}{2}\right) \frac{t / 330}{n} \text { \# of haft lives }
$$

b. Find the average rate of change in the amount over the first 5 half-lives ($5 \cdot 5730$ years). Use a calculator to get approximate values.

$$
\frac{A(5)-A(0)}{5.5730}=\frac{4-128}{5.5730}=\frac{-124}{5.5730} \approx-.00432
$$

d. Calculate the rate of change (exact) at $t=0, t=2 \cdot 5730$, and $t=5 \cdot 5730$ years. Use a calculator to get approximate values.

$$
\begin{aligned}
& A^{\prime}(0)=\frac{128 \ln \left(\frac{1}{2}\right)}{5730} \approx-.0155 \\
& A^{\prime}(2)=\frac{128 \ln \left(\frac{1}{2}\right)}{5730} \cdot \frac{1}{4} \approx-.00387 \\
& A^{\prime}(5)=\frac{128 \ln \left(\frac{1}{2}\right)}{5730} \cdot \frac{1}{32} \approx-.000484
\end{aligned}
$$

6.

Model the motion of a Ferris wheel with diamter 8 m , sitting 2 m off the ground. Suppose you start $(t=0)$ at the 9 o'clock position (furthest left on diagram), traveling counter-clockwise, and that the period is 8 minutes.
a. Write parametric equations $x(t)$ and $y(t)$ to model the position as a function of time.

$$
\begin{aligned}
& x(t)=-4 \cos \left(\frac{2 \pi t}{8}\right)=-4 \cos \left(\frac{\pi}{4} t\right) \\
& y(t)=6-4 \sin \left(\frac{2 \pi t}{8}\right)=6-4 \sin \left(\frac{\pi}{4} t\right)
\end{aligned}
$$

b. Find $x^{\prime}(t)$ and $y^{\prime}(t)$.

$$
\begin{aligned}
& (t) \text { and } y^{\prime}(t)=4 \sin \left(\frac{\pi}{4} t\right) \cdot \frac{\pi}{4}=\pi \sin \left(\frac{\pi}{4} t\right) \\
& y^{\prime}(t)=-4 \cos \left(\frac{\pi}{4} t\right) \cdot \frac{\pi}{4}=-\pi \cos \left(\frac{\pi}{4} t\right)
\end{aligned}
$$

c. Evaluate $x^{\prime}(t)$ and $y^{\prime}(t)$ at the rightmost position. $\longrightarrow t=4$

$$
\begin{aligned}
& x^{\prime}(4)=\pi \sin \pi=0 \\
& y^{\prime}(4)=-\pi \cos \pi=\pi
\end{aligned}
$$

d. Find $x^{\prime \prime}(t)$ and $y^{\prime \prime}(t)$.

$$
\begin{aligned}
& x^{\prime \prime}(t)=\frac{\pi^{2}}{4} \cos \left(\frac{\pi}{4} t\right) \\
& y^{\prime \prime}(t)=+\frac{\pi^{2}}{4} \sin \left(\frac{\pi}{4} t\right)
\end{aligned}
$$

e. Evaluate $x^{\prime \prime}(t)$ and $y^{\prime \prime}(t)$ at the rightmost position.

$$
\begin{aligned}
& x^{\prime \prime}(4)=\frac{\pi^{2}}{4} \cos \pi=-\frac{\pi^{2}}{4} \\
& y^{\prime \prime}(4)=+\frac{\pi^{2}}{4} \sin \pi=0
\end{aligned}
$$

