Unit 9 Group Work
PCHA 2021-22 / Dr. Kessner

No calculator! Have fun!

1. Evaluate the following limits, evaluating left and right side limits where applicable.
a. $\lim _{x \rightarrow 0} x \cot 7 x=\lim _{x \rightarrow 0} \frac{7 x \cdot \cos 7 x}{7 \sin 7 x} \rightarrow \frac{1}{7}$
b. $\lim _{x \rightarrow-\infty} e^{x} \sin x=0$

c. $\lim _{x \rightarrow 1} \frac{5 x^{2}+5 x-10}{(x-1)(x+2)}=\operatorname{lome} \frac{5\left(x^{2}+x-2\right)}{(x-1)(x+2)}$

d. $\lim _{x \rightarrow 0} \csc x$

e. $\lim _{h \rightarrow 0} \frac{f(3+h)-f(3)}{h}$, where $f(x)=x^{2}$. (Hint: use what you know about derivatives)

$$
\begin{aligned}
& =f^{\prime}(3) \quad \longrightarrow f^{\prime}(x)=2 x \\
& =6
\end{aligned}
$$

2. For the following functions find the derivative using one of the limit definitions.
a. Suppose that a little bird or a mathematician tells you that $\lim _{h \rightarrow 0} \frac{a^{h}-1}{h}=\ln (a)$. Find the derivative of $f(x)=a^{x}$ (using a limit definition).

$$
\begin{aligned}
f^{\prime}(x) & =\lim _{h \operatorname{mor} 0} \frac{f(x+h)-f(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{a^{x+h}-a^{x}}{h} \\
& =\lim _{h \rightarrow 0} a^{x} \frac{\left(a^{h}-1\right)}{h} \\
& =a^{x} \lim _{h \rightarrow 0}\left(\frac{a^{a}-1}{h}\right) \\
& =a^{x} \ln a
\end{aligned}
$$

b. Find $g^{\prime}(x)$, where $g(x)=m x+b$, using a limit definition.

$$
\begin{aligned}
g^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{g(x+h)-g(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{m(x+h)+b-[m x+b]}{h} g(x)=m x+b \\
& =\lim _{h \rightarrow 0} \frac{m h}{h} \\
& =m
\end{aligned}
$$

$$
\begin{aligned}
& \text { 3. Using the various rules for differentiation, calculate the derivatives of the following functions. } \\
& \text { a. } p(x)=\tan x \cot x=1 \\
& \longrightarrow p^{\prime}(x)=0 \\
& \text { or use the product rule } \\
& \text { for practice! } \\
& \text { b. } q(x)=2 \sin x \cos x \\
& q^{\prime}(x)=2 \cos x(\cos x)+2 \sin x(-\sin x) \quad \text { proud rule } \\
& =2 \cos ^{2} x-2 \sin ^{2} x
\end{aligned}
$$

c. $r(x)=\sin 2 x$

$$
\begin{aligned}
r^{\prime}(x) & =(\cos 2 x) \cdot 2 \\
& =2 \cos 2 x
\end{aligned}
$$

recall: $\sin x=2 \sin x \cos x$

$$
\cos 2 x=\cos ^{2} x-\sin ^{2} x
$$ doable angle formers

$$
\begin{aligned}
& S^{\prime}(x)=e^{\cot \left(x^{3}-1\right)} \cdot\left(-\csc ^{2}\left(x^{3}-1\right)\right)\left(3 x^{2}\right) \\
& \text { e. } t(x)=\log _{2}\left(\sec ^{3}\left(x^{5}\right)\right) \\
& t^{\prime}(x)=\frac{1}{\sec ^{3}\left(x^{5}\right) \ln 2} \cdot 3 \sec ^{2}\left(x^{5}\right) \cdot \sec \left(x^{5}\right) \tan \left(x^{5}\right) \cdot 5 x^{4}
\end{aligned}
$$ goy chain rule!

4. Consider the curve $x=4 y^{2}$.
a. Sketch the graph of this curve.

b. Find $\frac{d y}{d x}$ (in terms of x and y) by implicit differentiation.

$$
\begin{aligned}
& x=4 y^{2} \\
& 1=8 y \frac{d}{x}
\end{aligned}
$$

$$
\frac{d x}{\partial x}=\frac{1}{8 y}
$$

c. Solve for y in terms of x (choose the positive square root).

$$
\begin{gathered}
x=4 y^{2} \\
y=\sqrt{x / 4}=\frac{1}{2} \sqrt{x}
\end{gathered}
$$

d. Find $\frac{d y}{d x}$ using the expression for y you found above.

$$
\begin{aligned}
y=\frac{1}{2} \sqrt{x} \Rightarrow \frac{d y}{d x} & =\frac{1}{2} \cdot \frac{1}{2} x^{-1 / 2} \quad \text { (poor rule) } \\
=\frac{1}{2} x^{1 / 2} & =\frac{1}{4 \sqrt{x}}
\end{aligned}
$$

e. Verify that these two formulas for $\frac{d y}{d x}$ are the same.

5. Suppose a bacterial colony begins with 4000 cells and the population doubles every 4 hours.
a. Write an equation to model the population $P(t)$ of the colony as a function of time.

t	$p(t)$
0	4800
4	8000
8	16000

$$
P(t)=4000 \cdot 2 \frac{t / 4}{\alpha} \frac{t}{4}=\text { \#ofdoubling } \begin{gathered}
\text { ties }
\end{gathered}
$$

b. Find the average rate of growth in the population over the first 8 hours.

$$
\frac{P(8)-P(0)}{8}=\frac{16000-4800}{8}=\frac{12000}{8}=1500(\text { cells } / \mathrm{hr})
$$

c. Find $P^{\prime}(t)$. $\quad P(t)=4000 \cdot 2^{t / 4}$

$$
\begin{aligned}
P^{(t)}(t) & =4000 \cdot 2^{t / 4} \ln 2 \cdot \frac{1}{4} \\
& =(100 \mathrm{em} 2) 2^{t / 4}
\end{aligned}
$$

d. Calculate the growth rate (exact) at $t=0, t=4$, and $t=8$ hours. Given that $\ln 2 \approx .693$, approximate these rates (calculator ok).

t	$P^{\prime}(t)$
0	$1000 \ln 2 \approx 693$
4	$2 \cdot 1000 \ln 2 \approx 1400$
8	$4 \cdot 1000 \ln 2 \approx 2800$

Suppose a flea is sitting on a small mouse-powered Ferris wheel. The bottom of the wheel sits $10^{\prime \prime}$ off the ground, and the diameter of the wheel is $12^{\prime \prime}$. You give the mouse some coffee so the mouse runs fast: 3 seconds for a revolution. The flea starts at the point furthest to the right, and the wheel moves counter-clockwise.
a. Write parametric equations $x(t)$ and $y(t)$ to model the position of the flea as a function of time. When will the flea first be at the top of the wheel? Verify the position of the flea at that time.

$$
\begin{aligned}
& \text { pend } \frac{2 \pi}{6}=3 \\
& b=\frac{2 \pi}{3} \\
& \text { top of wed }
\end{aligned}
$$

$$
x(t)=6 \cos \left(\frac{2 \pi}{3} t\right)
$$

$$
y(t)=16+6 \sin \left(\frac{2 \pi}{3} t\right)
$$

b. Find $x^{\prime}(t)$ and $y^{\prime}(t)$.

$$
\begin{aligned}
& x^{\prime}(t)=6\left(-\sin \left(\frac{2 \pi}{3} t\right)\right) \cdot \frac{2 \pi}{3}=-4 \pi \sin \left(\frac{2 \pi}{3} t\right) \\
& y^{\prime}(t)=6 \cos \left(\frac{2 \pi}{3} t\right) \cdot \frac{2 \pi}{3}=4 \pi \cos \left(\frac{2 \pi}{3} t\right)
\end{aligned}
$$

c. Evaluate $x^{\prime}(t)$ and $y^{\prime}(t)$ at the top of the wheel.

$$
\begin{aligned}
& x^{\prime}\left(\frac{3}{4}\right)=-4 \pi \sin \frac{\pi}{2}=-4 \pi \\
& y^{\prime}\left(\frac{3}{4}\right)=4 \pi \cos \frac{\pi}{2}=0
\end{aligned}
$$

d. Find $x^{\prime \prime}(t)$ and $y^{\prime \prime}(t)$.

$$
\begin{aligned}
& x^{\prime \prime}(t)=-4 \pi \cos \left(\frac{2 \pi}{3}\right)\left(\frac{2 \pi}{3}\right)=-\frac{8 \pi^{2}}{3} \cos \left(\frac{2 \pi}{3} t\right) \\
& y^{\prime \prime}(t)=-4 \pi \sin \left(\frac{2 \pi}{3 t}\right)\left(\frac{2 \pi}{3}\right)=-\frac{8 \pi^{2}}{3} \sin \left(\frac{2 \pi}{3 t}\right)
\end{aligned}
$$

e. Evaluate $x^{\prime \prime}(t)$ and $y^{\prime \prime}(t)$ at the top of the wheel.

$$
\begin{aligned}
& x^{\prime \prime}\left(\frac{3}{4}\right)=-\frac{8 \pi^{2}}{3} \cos \frac{\pi}{2}=0 \\
& y^{\prime \prime}\left(\frac{3}{4}\right)=\frac{-8 \pi^{2}}{3} \sin \frac{\pi}{2}=\frac{-8 \pi^{2}}{3}
\end{aligned}
$$

