Practical Coding in Java

Learn to write and validate your own code

Darren Kessner, PhD

(revised September 1, 2025)

ii

© 2025 Darren Kessner

Contents

Introduction
About the book
About the author
Resources

0. Hello, world!
Hello. e
Basics L
Loops o
SeqUeNCes
Coding Exercises: Hello

1. Functions and Testing

Functions Lo
MonkeyTrouble oL oo
Coding Exercises: Functions and Testing

2. Strings and Math

HelloStrings
HelloMath o
HelloRandom
Coding Exercises: Strings and Math

Appendix A: Numeric Conversion

Decimal and Hexadecimal

Converting from Decimal to Hex

Binary
Converting between Hex and Binary

iii

15
16
18
20

21
22
24
26
28

iv

Octal

Exercises: Numeric Conversion

CONTENTS

Introduction

This book is a practical guide for learning to write code, using the Java
language. It can be used in an introductory Java class (e.g. AP Computer
Science), or as a guidebook for self-study.

I emphasize writing unit tests to validate your own code. Writing tests
for your own code will give you confidence that your code does what
you expect it to. With the development of generative Al it is easy to
generate code to solve any problem in any programming language, and
the code may seem to work. However, it is now even more important for
software developers to ensure that code behaves as expected.

Rather than reading this book, I recommend that you focus on writing
code, i.e. doing the exercises for each chapter. The only way to learn
to write code is to actually write code. Each chapter has working code
examples that illustrate new syntax or concepts, together with the output
from running the code. You will learn much more by struggling with and
completing the exercises than by reading the examples.

About the book

This book is based on notes, demo code, and coding exercises I have
written and used over the past 10 years of teaching AP Computer Science
at Marlborough School in Los Angeles.

Various versions of this content have been published previously on my
class webpages with open source licensing,

2 INTRODUCTION

About the author

I am the Program Head of Computer Science and Software Innovation
at Marlborough School in Los Angeles, where I have taught Math and
Computer Science for 11 years.

I am also a software developer with over 25 years of experience writing
software in a wide variety of fields, including computer security, computer
graphics, and scientific applications. My published academic papers
include contributions to the areas of bioinformatics, proteomics, and
population genetics.

I am a strong proponent of free and open source software, open public
data, and open educational resources. I am also an advocate for increasing
the diversity of voices in the STEM fields in general, and in software
development in particular.

In the classroom I use free and open source software, open public data,
and open educational resources.

Darren Kessner, PhD
https://dkessner.github.io

Resources

There are lots of free resources available online for learning Java.

David J Eck, Introduction to Programming Using Java, Seventh Edition
http://math.hws.edu/javanotes/

Wikibooks Java Programming
https://en.wikibooks.org/wiki/Java_ Programming

CodingBat code practice
https://codingbat.com/java

https://dkessner.github.io
http://math.hws.edu/javanotes/
https://en.wikibooks.org/wiki/Java_Programming
https://codingbat.com/java

0. Hello, world!

This zeroth chapter is a quick overview of Java syntax, including declaring
variables, loops (for), and conditions (if).

One of your main goals this chapter is to write a FizzBuzz program (see
Coding Exercises).

4 0. HELLO, WORLD!

Hello

/7

// Hello. java

/7

public class Hello

{
public static void main(String[] args)
{

System.out.println("Hello, world!");

}

}

Output:

Hello, world!

BASICS

Basics

/7
// Basics. java

V4

public class Basics
{
public static void main(String[] args)
{
System.out.println("Hello, world!");

// basic types: int, float, double, boolean

int n = 5;
System.out.println(n);

n=7;
System.out.println(n);

float x = 1.23f; // floating point
System.out.println(x) ;

double y = 1.23;
System.out.println(y) ;

double my_number = 5.67; // snake case
System.out.println(my_number) ;

double myNumber = 5.67; // camel case
System.out.println(myNumber) ;

// this is a comment

/%
this 1s a multtline comment
this 1s a multtline comment

*/

boolean isHappy = true;

Output:

System.out.println(isHappy) ;
// tsHappy = 5; // error

// reference types: String,

String hello = "Hello, world!";

System.out.println(hello);

hello = "blah";
System.out.println(hello);

Hello, world!

Hello, world!

blah

0. HELLO, WORLD!

LOOPS

Loops
/7

// Loops. java
/7

public class Loops

{
public static void main(String[] args)
{
System.out.println("Loops") ;
// tnitialization: int =0
// condition: t<10
// update: i++
// |l means or
// &4 means and
for (int i=0; i<10; i++)
{
if (i%2 == 0)
{
System.out.println("Even") ;
}
else if (i == 7 || 1 == 3)
{
System.out.println("Lucky") ;
+
else
{
System.out.println(i);
}
}
}
}
Output:

Loops

Even

Even
Lucky
Even

Even
Lucky
Even

0. HELLO, WORLD!

SEQUENCES

Sequences

/7

// Sequences. java

V4

public class Sequences

{
public static void main(String[] args)
{
System.out.println("Sequences");
System.out.println();

// print multiples of 7

for (int i=0; i<30; i++)
{
if (i%7 == 0)
System.out.println(i);
¥

System.out.println();

// Note:
// = s wvariable assignment
// == 1is equality comparison

// Note:
// % += 7 means: 1 = 1+7
// i++ means: i+=1 (or i=1+1)

// print multiples of 7 again

for (int i=0; i<30; i+=7)
System.out.println(i);

System.out.println();

// arithmetic sequence:
// 3, 10, 17, 24,

10 0. HELLO, WORLD!

// print sequence using explicit formula

for (int i=0; i<5; i++)
System.out.println(i*7 + 3);

System.out.println();
// print sequence using recursive formula
int value = 3;
for (int i=0; i<5; i++)
{
System.out.println(value);

value += 7;

}

System.out.println();

Output:
Sequences

0
7
14
21
28

14
21
28

10

SEQUENCES 11

17
24
31

10
17
24
31

12 0. HELLO, WORLD!

Coding Exercises: Hello

1. Multiples of 3

Write a program that prints the first 10 multiples of 3. You should write
a class Multiples0f3 in a file Multiples0f3. java

2. FizzBuzz

Write a FizzBuzz program. Your class should be named FizzBuzz and
your source file should be named FizzBuzz. java.

Your program should iterate through the first 30 positive integers, printing
each one. However, if the integer n is a multiple of 3, print Fizz instead
of the number. And if n is a multiple of 5, print Buzz instead. And if n
is a multiple of both 3 and 5, print FizzBuzz instead.

Sample output:

1
2
Fizz
4
Buzz
Fizz

Fizz
Buzz

11

Fizz

13

14
FizzBuzz
16

3. Geometric sequence

Write a program Geometric.java that prints out the first terms of a
geometric sequence, i.e. a sequence with a common ratio, for example: 3,

CODING EXERCISES: HELLO 13
6, 12, 24, 48, ...

4. Cubes

Write a program Cubes. java that prints out the cubes of the counting
numbers: 0, 1, 8, 27, 64, 125, ...

5. Fibonacci sequence

Write a program Fibonacci. java that prints out the first 30 terms of
the Fibonacci sequence: 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, ...

Hint: T find it easiest to think about this problem using 3 variables: a
and b slide up the sequence, and we use a temporary variable ¢ to help
do this.

Challenge: After you’ve done this exercise, try doing it using only 2
variables.

Challenge: Try printing out the ratios of successive terms of the Fibonacci
sequence. The sequence of ratios approaches a limit - do you recognize
what this limit is?

14

0. HELLO, WORLD!

1. Functions and Testing

In this chapter your goal is to become familiar with functions, and writing
unit tests to test your functions. This is the most important chapter of
the book.

Unit tests are low-level tests of a single function (the target function).
In the unit test function, you are given sample input and the expected
output (return value). The unit test function runs the target function
with the given input and checks that the return value matches what was
expected.

Unit test functions are important for verifying the behavior of your code.
As you add more code to your project, it is easy to introduce new bugs.
Running the unit tests after any changes will give you confidence that
your functions still behave as you expect.

Unit tests are also important for ongoing maintenance of your code. For
example, if you find a new bug, you can:

e write a new unit test that fails due to the bug
e fix the bug
o verify that all unit tests pass

In the software development world, this procedure of writing tests first is
called test driven development (TDD).

15

16 1. FUNCTIONS AND TESTING

Functions
//

// Functions. java

//

public class Functions

{
public static void hello()
{
System.out.println("Hello, world!");
}

public static double sum(double a, double b)
{

return a+b;

}
public static String twice(String s)
{
return s+s;
}
public static boolean is0dd(int n)
{
if (n%2 == 1)
{
// another line
return true;
}
else
return false;
}
public static void main(Stringl[] args)
{
hello();
double a = 5.0;
double b = 7.0;

FUNCTIONS 17

System.out.println("a+b: " + sum(a, b));

double ¢ = sum(6.23, 7.3412345);
System.out.println("a+b: " + c);

String result = twice("Hello, APCS! ");
System.out.println(result);

System.out.println("is0dd(5): " + is0dd(5));
System.out.println("is0dd(7): " + is0dd(7));
System.out.println("is0dd(8): " + is0dd(8));

Output:

Hello, world!

atb: 12.0

atb: 13.5712345

Hello, APCS! Hello, APCS!
is0dd(5): true

is0dd(7): true

is0dd(8): false

18 1. FUNCTIONS AND TESTING

MonkeyTrouble

/7
// MonkeyTrouble. java

//

public class MonkeyTrouble
{
public static boolean monkeyTrouble(boolean aSmile,
boolean bSmile)
{

return aSmile == bSmile;

public static void testMonkeyTrouble(boolean aSmile,
boolean bSmile,
boolean expected)

boolean result = monkeyTrouble(aSmile, bSmile);

System.out.print("aSmile: " + aSmile +
" bSmile: " + bSmile +
" expected: " + expected +
" result: " + result + " ");

if (result == expected)
System.out.println("YAY!");

else
System.out.println("Boohoo!");

public static void main(String[] args)

{
System.out.println("Hello, world!");

testMonkeyTrouble (true, true, true);

testMonkeyTrouble(false, false, true);
testMonkeyTrouble (true, false, false);
testMonkeyTrouble(false, true, false);

MONKEYTROUBLE 19

}
Output:

Hello, world!

aSmile: true bSmile: true expected: true result: true YAY!
aSmile: false bSmile: false expected: true result: true YAY!
aSmile: true bSmile: false expected: false result: false YAY!
aSmile: false bSmile: true expected: false result: false YAY!

20 1. FUNCTIONS AND TESTING

Coding Exercises: Functions and Testing

1. Vampire

A person is a vampire if she is asleep during waking hours (6:00 to 22:00),
or awake during sleeping hours (before 6:00 or after 22:00). Write a
class with a static function boolean isVampire(float hour, boolean
awake) where hour is the time represented as a float (e.g. 6.5 means
6:30), and awake represents whether the person is awake, returning true
if that person is a vampire. Most importantly, write a unit test function
and several tests.

2. Good Deal

A store has marked down the prices of many items, but you only want to
buy something if the discount is more than 25% (or in other words, the
sale price is < 75% of the original price). Write a function boolean
goodDeal (double originalPrice, double salePrice) that returns
true if you're getting a good deal on the item. Most importantly, write a
unit test function and several tests.

3. (Challenge) Prime Numbers

Write a program to print the prime numbers.
To do this, first write a function isPrime():

static boolean isPrime(int n)
{

// return true <-> n 1S prime

}
Write a unit test function and several unit tests for isPrime().

Then in your main() function, loop through the first 100 integers and
print only the ones for which isPrime() returns true.

2. Strings and Math

This chapter demonstrates the use of strings and math functions in
Python.

21

22 2. STRINGS AND MATH

HelloStrings
//

// HelloStrings. java
/7

public class HelloStrings

{

public static void main(String[] args)

{
String hello = "HelloWorld";
System.out.println("hello: " + hello);
// A String variable is a reference to a String object,
// which has methods (functions) like “length()’
System.out.println("hello.length(): " + hello.length());
// String indezing is O-based
System.out.println("hello.charAt(0): " + hello.charAt(0));
System.out.println("hello.charAt(1): " + hello.charAt(1));
System.out.println("hello.charAt(2): " + hello.charAt(2));
// The String method “substring(a,b)’ returns the substring
// specified by the half-open interval [a,b)
String firstPart = hello.substring(0,5);
System.out.println("firstPart:" + firstPart);
// hello.substring(a) is shorthand for hello.substring(a,
// hello.length())
String secondPart = hello.substring(5);
System.out.println("secondPart:" + secondPart);

}

}

Output:

HELLOSTRINGS

hello:
hello.
.charAt(0): H
hello.
hello.

hello

HelloWorld
length(): 10

charAt(1): e
charAt(2): 1

firstPart:Hello
secondPart:World

23

24

HelloMath

/7

// HelloMath. java

/7

2. STRINGS AND MATH

public class HelloMath

{

public static void main(String[] args)

{
// The
// and
// and

System.
System.

System.
System.
System.
System.

Math library defines common mathematical constants

functions. They are all defined as static members
methods of the Math class.

out
out

out
out
out
out

.println("pi: " + Math.PI);
.println("e: " + Math.E);

.println("cos(0): " + Math.cos(0));
.println("sin(0): " + Math.sin(0));
.println("cos(pi): " + Math.cos(Math.PI));
.println("sin(pi): " + Math.sin(Math.PI));

// Math.abs() ts useful for fuzzy unit tests, which allow
// for roundoff error in floating point calculations.

double result = Math.sin(Math.PI);

if (Math.abs(result) < le-6)
System.out.println("Yippee!");

else

System.out.println("Bummer.") ;

Output:

pi: 3.141592653589793
e: 2.718281828459045

cos(0): 1.0

HELLOMATH

sin(0): 0.0

cos(pi): -1.0

sin(pi): 1.2246467991473532E-16
Yippee!

25

26 2. STRINGS AND MATH

HelloRandom

/7
// HelloRandom. java
/7

public class HelloRandom
{
public static void main(String[] args)
{
// Math.random() returns a double in [0,1)

System.out.println("Random doubles in [0,1):");
for (int i=0; i<5; i++)
{
double value = Math.random() ;
System.out.println(value) ;

}

System.out.println();
System.out.println("Random doubles in [0,10):");
for (int i=0; i<5; i++)
{
double value = Math.random() * 10;
System.out.println(value) ;

}

System.out.println();
System.out.println("Random doubles in [200,210):");
for (int i=0; i<5; i++)
{
double value = Math.random() * 10 + 200;
System.out.println(value) ;

}

System.out.println();
System.out.println("Random integers in [0,100):");
for (int i=0; i<5; i++)
{
int value = (int) (Math.random() * 100);

HELLORANDOM

System.out.println(value) ;

Output:

Random doubles in [0,1):
0.7014722597039651
0.5201414396696359
0.09984441252727838
0.8753981452285116
0.54847854244902

Random doubles in [0,10):
1.1663874220649961
4.801221245712766
8.452328363574148
9.867377164322509
0.13839014778496028

Random doubles in [200,210):
203.33141093006617
203.72093391403254
206.75863225741566
209.26876107737968
204.76131404962968

Random integers in [0,100):
82
54
4
71
55

27

28 2. STRINGS AND MATH

Coding Exercises: Strings and Math

1. Greetings.

Write a function greetings () that takes a single String name and returns
returns a greeting using the given name. Be sure to include unit tests.

Sample output:

greetings("Dr. Kessner") -> "Hello, Dr. Kessner, how are you?"
greetings("Ascii Cat") -> "Hello, Ascii Cat, how are you?"
greetings("Sydneys") -> "Hello, Sydneys, how are you?"

2. Attention.

Write a function attention() that takes a single String as input and
returns true if the string starts with “Hey, you!”. Be sure to include unit
tests.

Sample output:

attention("Hello, my name is Inigo Montoya.") -> false
attention("Excuse me, Dr. Kessner?") -> false
attention("Hey you! Give me your code!" -> true

3. Coin flip.

Write a function that flips a coin randomly, returning a String, either
“Heads” or “Tails”. Functions involving randomness are a little tricky to
write unit tests for. So you should just have your main() function print
the results from 10 or 20 coin flips to try out your function.

4. Die rolling

Write a function that returns the result of rolling a single 6-sided die. In
other words, when you call the function, it should randomly return 1, 2,
3,4,5, or 6.

Appendix A: Numeric
Conversion

29

30 APPENDIX A: NUMERIC CONVERSION

Decimal and Hexadecimal

Decimal is base 10. The digit positions correspond to powers of 10.

1284ppc=| 1] 2]3]4]
103 102 10! 109
=1-10°42-107 +3-10" +4-10°
= 1000 4 200 + 30 + 4

Hexadecimal (hex) is base 16. In hexadecimal we have 16 symbols: the
10 decimal symbols (0-9) and 6 letters (A-F).

decimal | hexadecimal
0 0
1 1
2 2
3 3
4 4
5 5
6 6
7 7
8 8
9 9
10 A
11 B
12 c
13 D
14 E
15 F

The digit positions correspond to powers of 16. In code, we write hex
numbers with the prefix 0x. Here are some examples:

0x10=[1] 0 |

161 160
=1-16'+0-16°
=1-1640-1

= 16 pEc

DECIMAL AND HEXADECIMAL 31

0xA2 =

161 160
=10-16' 4+2-16°
=10-164+2-1
= 162 pEc

0x294 —

162 16! 169
=2-162+9-16" + A-16°
=2-256+9-16+10-1
= 666 pEC

32 APPENDIX A: NUMERIC CONVERSION

Converting from Decimal to Hex

To convert from decimal to hex, pretend you are making change.

Example To convert 99pgc to hex, we first ask how many 16’s it contains.
We compute 6 - 16 = 96, with remainder 3.

Oppc=6-164+3
= 0x63

Example To convert 300pgc to hex, we first ask how many 256’s it
contains (one, with remainder 44). Then we ask how many 16’s are
contained in 44 (2, with remainder 12).

300pgc =1-256+2-16 + 12
= 0x12C

BINARY 33

Binary

Binary is base 2, so we have just two symbols: 0 and 1.

decimal | hexadecimal | binary
0 0 0
1 1 1
2 2 10
3 3 11
4 4 100
5 5 101
6 6 110
7 7 111
8 8 1000
9 9 1001
10 A 1010
11 B 1011
12 C 1100
13 D 1101
14 E 1110
15 F 1111

A binary digit is called a bit.
Notice that with 4 bits, we have 24 = 16 possibilities:

Lo/1]o/i]o/t]on|

2 2 2 2

And with 8 bits, we have 28 = 256 possibilities:

Lo/1[o/i]o/i]oin]on]onfon]on]

A byte is 8 bits (and sometimes 4 bits is called a nibble).

We seen that there are 256 possible bytes, corresponding to the decimal
values 0—255, which correspond to the binary values 00000000—11111111,
which correspond to the 2 digit hex values 0x00 — OxF'F'.

34 APPENDIX A: NUMERIC CONVERSION

Converting between Hex and Binary

One hex digit corresponds to 4 bits, which makes it easy to convert
between hex and binary.

Example
[7] ¢ |=]o111]1100]
7 C
OX7C =01111100 BIN
Example
| F | F|=[t1]1111]
I3 F
0xFF = 11111111 pry
Example

[2]9] A |=[0010]1001]1010]

0x29A = 00101001 1010 gyN

OCTAL 35

Octal

Octal is base 8, and we use the eight numeric symbols 0-7.

decimal | hexadecimal | binary | octal
0 0 0 0
1 1 1 1
2 2 10 2
3 3 11 3
4 4 100 4
5 5 101 5
6 6 110 6
7 7 111 7
8 8 1000 10
9 9 1001 11
10 A 1010 12
11 B 1011 13
12 C 1100 14
13 D 1101 15
14 E 1110 16
15 F 1111 17

Example

231 gcr -

82 81 g0
=2.824+3.8"+4.8°
=2-64+3-8+4-1
= 156 pEC

One octal digit corresponds to 3 bits (23 = 8), so conversions between
octal and binary are also straightforward.

Example

[2]3]4]=[o010]011]100]

234 oct = 010011 100 1N

36 APPENDIX A: NUMERIC CONVERSION

To convert decimal to octal, pretend you are making change.
Example

To convert 100pgc to octal, we first ask how many 64’s it contains (1,
with remainder 36). Then we ask how many 8’s are in 36 (4, with
remainder 4).

100ppe =1-64+4-8+4-1
= 144 oot

EXERCISES: NUMERIC CONVERSION

Exercises: Numeric Conversion

0

© 00 N O Ut e W N

)
)
)
)
)
)
)
)
)
)

Convert 1234 decimal to hexadecimal. [0x4D2]
Convert 0x321 hexadecimal to decimal. [801]
Convert 123 decimal to octal. [173]

Convert 321 octal to decimal. [209]

Convert 123 decimal to binary. [1111011]

Convert 123 decimal to binary using your answer from #2.

Convert 801 decimal to binary. [1100100001]

Convert 801 decimal to binary using your answer from #1.

Convert binary 111011001 to octal. [731]
Convert binary 11011010 to hex. [0xDA]

37

38

APPENDIX A: NUMERIC CONVERSION

	Introduction
	About the book
	About the author
	Resources

	0. Hello, world!
	Hello
	Basics
	Loops
	Sequences
	Coding Exercises: Hello

	1. Functions and Testing
	Functions
	MonkeyTrouble
	Coding Exercises: Functions and Testing

	2. Strings and Math
	HelloStrings
	HelloMath
	HelloRandom
	Coding Exercises: Strings and Math

	Appendix A: Numeric Conversion
	Decimal and Hexadecimal
	Converting from Decimal to Hex
	Binary
	Converting between Hex and Binary
	Octal
	Exercises: Numeric Conversion

