Practical Coding in Python

Learn to write and validate your own code

Darren Kessner, PhD

(revised September 1, 2025)

ii

© 2025 Darren Kessner

Contents

Introduction
About the book
About theauthor

0. Hello, world!
Hello o
Basics L
Loops e
Sequences
Coding Exercises: Hello

1. Functions and Testing
Functions Lo
Monkey trouble
Coding Exercises: Functions and Testing

2. Strings and Math
Hello strings
Hellomath
Hellorandom
Coding Exercises: Strings and Math

3. Loops & Algorithms
Hello loops o
Hello algorithms
Binimate
Coding Exercises: Loops and Algorithms

iii

13
14
16
18

19
20
21
23
25

iv CONTENTS

Appendix A: Virtual Environments and Libraries 37
Exercises: Installing and using libraries 40
Helloemoji 41
Hello requests 43
Hello, Juypter Lab! 47

Introduction

This book is a practical guide for learning to write code in Python. The
structure follows Practical Coding (Java), and in fact the exercises are
the same or very similar.

This is meant as a guidebook for self-study, so that you can learn how to
use Python to solve the same problems that you can solve with Java.

I emphasize writing unit tests to validate your own code. Writing tests
for your own code will give you confidence that your code does what
you expect it to. With the development of generative Al, it is easy to
generate code to solve any problem in any programming language, and
the code may seem to work. However, it is now even more important for
software developers to ensure that code behaves as expected.

Rather than reading this book, I recommend that you focus on writing
code, i.e. doing the exercises for each chapter. The only way to learn
to write code is to actually write code. Each chapter has working code
examples that illustrate new syntax or concepts, together with the output
from running the code. You will learn much more by struggling with and
completing the exercises than by reading the examples.

About the book

This book is based on notes, demo code, and coding exercises I have
written and used over the past 10 years of teaching AP Computer Science
at Marlborough School in Los Angeles.

Various versions of this content have been published previously on my
class webpages with open source licensing,

2 INTRODUCTION

About the author

I am the Program Head of Computer Science and Software Innovation
at Marlborough School in Los Angeles, where I have taught Math and
Computer Science for 11 years.

I am also a software developer with over 25 years of experience writing
software in a wide variety of fields, including computer security, computer
graphics, and scientific applications. My published academic papers
include contributions to the areas of bioinformatics, proteomics, and
population genetics.

I am a strong proponent of free and open source software, open public
data, and open educational resources. I am also an advocate for increasing
the diversity of voices in the STEM fields in general, and in software
development in particular.

In the classroom I use free and open source software, open public data,
and open educational resources.

Darren Kessner, PhD
https://dkessner.github.io

https://dkessner.github.io

0. Hello, world!

This zeroth chapter is a quick overview of Python syntax.

If you have experience coding in a Java-like language (C/C++, Processing,
Arduino), pay extra attention to the differences between Java and Python,
which I’ve noted in the comments of the code examples.

One of your main goals this chapter is to write a FizzBuzz program (see
Coding Exercises).

4

Hello

#

hello.py

#

print ("Hello, world!")
Output:

Hello, world!

0. HELLO, WORLD!

BASICS 5

Basics

#

basics.py

#

Comments are specified by the octothorpe (hashtag) “#.

You declare a vartable by assigning it.

In Python, the variable's type is dynamic: both the type and
value of a variable can change. All types are reference types:
every wvariable refers to an object, but the class can change.
The basic types in Python are similar to the wrapper types

Integer, Float, etc. in Java.

x =5 # integer

print("x:", x)

X

=1.23 # float

print("x:", x)

X

= "hello" # string

print("x:", x)

X

= True # boolean

print("x:", x)

Output:

x: 5
X:
X
X

1.23

: hello
: True

6 0. HELLO, WORLD!

Loops

#
loops.py
#

Lists are declared with the square brackets, and may contain
objects with different types.

things = [7, 4.20, "juggling ball", Truel
print("things:", things)

List indexzing 1s O-based, just like Java.

print("things[0]:", things[0])
print("things[2]:", things[2])

You can also give index ranges, resulting in a "slice” of the
list, and negative indices which count from the end.

print("things[0:2]", things[0:2])
print("things[-1]:", things[-1])
print("things[-2]:", things[-2])

The Python for loop to iterate through a list is similar to the
Java for-each loop.

Important difference from Java: Python uses the colon followed by
indented code to indicate scope, where Java uses the curly braces
{}. You can indent any amount, but you must be consistent within
the scope.

print("printing items")
for item in things:
print("item:", item)

You can also use the range() function to iterate through a range
of integers. range(begin, end) returns the integers in the

half-open interval [begin,end). range(end) ts shorthand for

range(0, end). You can also specify a step parameter:

LOOPS 7

range(begin, end, step).

print ("printing range(5)")
for x in range(5):
print("x:", x)

print("printing range(11, 20, 2)")
for x in range(11, 20, 2):
print("x:", x)

Conditions are checked with “tf°, with scope specified by
indentation as with " for .

Note that = and == are the similar to Java:
= 1s assignment
== 1s comparison (returns a boolean)

However, Python is different from Java in that == compares
wvalues, not references.

print("printing with conditions")
for i in range(10):
if i%2 == 0:
print ("Even")
elif i == T7: # "else if" in Java
print ("Lucky")
else:
print (i)

Output:

things: [7, 4.2, 'juggling ball', Truel
things[0]: 7

things[2]: juggling ball

things[0:2] [7, 4.2]

things[-1]: True

things[-2]: juggling ball

printing items

item: 7

item: 4.2

item: juggling ball
item: True

printing range(5)

printing range(11, 20, 2)

LI - -

HoM oMM

X:

printing with conditions

0
1
2
3
4

11
13
15
17
19

Even

1

Even

3

Even

5

Even

Lucky

Even

9

0. HELLO, WORLD!

SEQUENCES 9

Sequences

#
sequences.py
#

Print multiples of 7

print("Multiples of 7")
for i in range(30):
if i%7 == O:
print (i)

Print multiples of 7 agatin using range(begin, end, step)

print("Multiples of 7")
for i in range(0, 29, 7):
print(i)

Arithmetic sequences have a common difference. For example, the
sequence {3, 10, 17, 24, ...} has common difference 7.

Print an arithmentic sequence using its recursive formula.

print("Arithmetic sequence: recursive")
value = 3
for i in range(5):

print(value)

value += 7

Print an arithmetic sequence using its explicit formula.

print("Arithmetic sequence: explicit")
for i in range(5):
print(3 + ix7)

Output:

Multiples of 7
0

10

7
14
21
28
Multiples of 7
0
7
14
21
28

Arithmetic sequence:

3

10
17
24
31

Arithmetic sequence:

3

10
17
24
31

recursive

explicit

0. HELLO, WORLD!

CODING EXERCISES: HELLO 11

Coding Exercises: Hello

1. Multiples of 3

Write a program that prints the first 10 multiples of 3.

2. FizzBuzz
Write a FizzBuzz program.

Your program should iterate through the first 30 positive integers, printing
each one. However, if the integer n is a multiple of 3, print Fizz instead
of the number. And if n is a multiple of 5, print Buzz instead. And if n
is a multiple of both 3 and 5, print FizzBuzz instead.

Sample output:

1

2
Fizz
4
Buzz
Fizz
7

8
Fizz
Buzz
11
Fizz
13
14
FizzBuzz
16

3. Geometric sequence

Write a program that prints out the first terms of a geometric sequence,
i.e. a sequence with a common ratio, for example: 3, 6, 12, 24, 48, ...

12 0. HELLO, WORLD!

4. Cubes

Write a program that prints out the cubes of the counting numbers: 0, 1,
8, 27, 64, 125, ...

5. Fibonacci sequence

Write a program that prints out the first 30 terms of the Fibonacci
sequence: 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, ...

Hint: 1 find it easiest to think about this problem using 3 variables: a
and b slide up the sequence, and we use a temporary variable ¢ to help
do this.

Challenge: After you’ve done this exercise, try doing it using only 2
variables.

Challenge: Try printing out the ratios of successive terms of the Fibonacci
sequence. The sequence of ratios approaches a limit - do you recognize
what this limit is?

1. Functions and Testing

In this chapter your goal is to become familiar with functions, and writing
unit tests to test your functions. This is the most important chapter of
the book.

Unit tests are low-level tests of a single function (the target function).
In the unit test function, you are given sample input and the expected
output (return value). The unit test function runs the target function
with the given input and checks that the return value matches what was
expected.

Unit test functions are important for verifying the behavior of your code.
As you add more code to your project, it is easy to introduce new bugs.
Running the unit tests after any changes will give you confidence that
your functions still behave as you expect.

Unit tests are also important for ongoing maintenance of your code. For
example, if you find a new bug, you can:

e write a new unit test that fails due to the bug
e fix the bug
o verify that all unit tests pass

In the software development world, this procedure of writing tests first is
called test driven development (TDD).

13

14 1. FUNCTIONS AND TESTING

Functions
#

functions.py
#

def hello():
print("Hello, world!")

hello()

Difference from Java: note the lack of type specifications in
either input parameters or return values

def sum(a,b):
return at+b

print ("sum(5,7):", sum(5,7))
dynamic typing: for strings, + ©s concatenation
print (sum("Hello, ", "world!"))
def is_odd(n):

return nj,2 ==
print("is_odd(5):", is_odd(5))
print("is_odd(7):", is_odd (7))
print("is_odd(8):", is_odd(8))

Python has a very useful feature called List Comprehensions.

odd_numbers = [i for i in range(10) if is_odd(i)]
print("odd_numbers:", odd_numbers)

even_numbers = [2*i for i in range(5)]
print("even_numbers:", even_numbers)

FUNCTIONS 15

In general, you can write:

my_list = [f(z) for z in things if P(z)]

#

You can think of P() as a condition that gives you a subset of
things, and f() is a transformation of each thing x.

Output:

Hello, world!

sum(5,7): 12

Hello, world!

is_odd(5): True

is_odd(7): True

is_odd(8): False

odd_numbers: [1, 3, 5, 7, 9]
even_numbers: [0, 2, 4, 6, 8]

16 1. FUNCTIONS AND TESTING

Monkey trouble

*

monkey_trouble. py

This exzercise ©s from CodingBat by Nick Parlante
https://codingbat.com/prob/p181646

*

We have two monkeys, a and b, and the parameters aSmile and
bSmile indicate if each s smiling. We are in trouble if they are
both smiling or if neither of them ts smiling. Return true t1f we
are in trouble.

H W "W

monkey_trouble() s the function you want to test.

def monkey_trouble(aSmile, bSmile):
return aSmile == bSmile

test_monkey_trouble() is the unit test function, with arguments
for given input and the expected output.

def test_monkey_trouble(aSmile, bSmile, expected):
result = monkey_trouble(aSmile, bSmile)

print(f"aSmile: {aSmile}, bSmile: {bSmile}, "
f'expected: {expected}, result: {resultl}")

if result == expected:
print ("PASSED")
else:
print ("FAILED")

We run several tests, warying the inpul parameters and checking
that we get the output we expect from monkey_trouble().

test_monkey_trouble(True, True, True)
test_monkey_trouble(False, False, True)
test_monkey_trouble(True, False, False)

MONKEY TROUBLE 17

Named arqguments can help the readability of your code.

test_monkey_trouble(aSmile=False, bSmile=True, expected=False)

Output:

aSmile: True, bSmile: True, expected: True, result: True
PASSED

aSmile: False, bSmile: False, expected: True, result: True
PASSED

aSmile: True, bSmile: False, expected: False, result: False
PASSED

aSmile: False, bSmile: True, expected: False, result: False
PASSED

18 1. FUNCTIONS AND TESTING

Coding Exercises: Functions and Testing

1. Vampire

A person is a vampire if she is asleep during waking hours (6:00 to 22:00),
or awake during sleeping hours (before 6:00 or after 22:00). Write a
function is_vampire (hour, awake) where hour is the time represented
as a float (e.g. 6.5 means 6:30), and awake represents whether the person
is awake (True or False), returning True if that person is a vampire and
False otherwise. Most imporantly, write a unit test function and several
unit tests.

2. Good Deal

A store has marked down the prices of many items, but you only
want to buy something if the discount is more than 25% (or in other
words, the sale price is < 75% of the original price). Write a function
good_deal (originalPrice, salePrice) that returns true if you're get-
ting a good deal on the item. Most importantly, write a unit test function
and several unit tests.

3. (Challenge) Prime Numbers
Write a program to print the prime numbers.
To do this, first write a function is_prime():

def is_prime(n):
{

// return True <-> n is prime

}
Write a unit test function and several unit tests for this function.

Then in your program, loop through the first 100 integers and print only
the ones for which is_prime() returns True.

2. Strings and Math

This chapter demonstrates the use of strings and math functions in
Python.

19

20 2. STRINGS AND MATH

Hello strings

#
hello_strings.py
#

hello = "HelloWorld"
print("hello: ", hello)
print("len(hello): ", len(hello))

String indexing is O-based, and you create substrings with the
slice notation (like lists).

print("hello[0]: ", hello[0])
print("hello[0:5]:", hello[0:5])
print("hello[5:]1: ", hello[5:])
print("hello[5:-2]: ", hello[5:-2])

f-strings can be useful for creating strings that contain Python
expressions

print(f"hello: {hello} {len(hello)} {len(hello) == 10}")

Output:

hello: HelloWorld
len(hello): 10

hello[0]: H

hello[0:5]: Hello
hello[5:]: World
hello[5:-2]: Wor

hello: HelloWorld 10 True

HELLO MATH 21

Hello math

#
hello_math.py
#

Importing the math module gives you access to mathematical
constants and functions.

import math

print("math.pi:", math.pi)
print("math.cos(math.pi):", math.cos(math.pi))

You can import all the names (constants and functions) from a

module for conventience. In larger projects it is mot generally
recommended to do this due to the potential for mame conflicts
between functions in different modules.

from math import *

print("pi:", pi)
print("e:", e)

print("cos(0):", cos(0))
print("sin(0):", sin(0))
print("cos(pi):", cos(pi))
print("sin(pi):", sin(pi))

result = sin(pi)

if abs(result) < le6:
print("Yay!")
else:
print("Boo!")

Output:

math.pi: 3.141592653589793
math.cos(math.pi): -1.0
pi: 3.141592653589793

e: 2.718281828459045

22 2. STRINGS AND MATH

cos(0): 1.0

sin(0): 0.0

cos(pi): -1.0

sin(pi): 1.2246467991473532e-16
Yay!

HELLO RANDOM 23

Hello random

#
hello_random.py
#

import random
random() returns a walue in [0,1)

print ("Random values in [0,1)")
for i in range(5):
print (random.random())

uniform(a,b) returns a value in [a,b)

print ()
print ("Random values in [0,100)")
for i in range(5):

print (random.uniform(0, 100))

randint (a,b) returns an integer in [a,b] (note: closed interval)

print ()

print ("Random integers in [1,10]")

for i in range(5):
print(random.randint (1, 10))

Output:

Random values in [0,1)
0.585961360088896
0.18310505104513708
0.42122895197406385
0.4586921921900672
0.8552122193463879

Random values in [0,100)
0.12792921124947787

24 2. STRINGS AND MATH

12.627624801719916
61.359384626313584
15.253554451169215
78.34393981946957

Random integers in [1,10]

DO W W

CODING EXERCISES: STRINGS AND MATH 25

Coding Exercises: Strings and Math

1. Greetings.

Write a function greetings () that takes a single String name and returns
returns a greeting using the given name. Be sure to include unit tests.

Sample output:

greetings("Dr. Kessner") -> "Hello, Dr. Kessner, how are you?"
greetings("Ascii Cat") -> "Hello, Ascii Cat, how are you?"
greetings("Sydneys") -> "Hello, Sydneys, how are you?"

2. Attention.

Write a function attention() that takes a single String as input and
returns true if the string starts with “Hey you!”. Be sure to include unit
tests.

Sample output:

attention("Hello, my name is Inigo Montoya.") -> false
attention("Excuse me, Dr. Kessner?") -> false
attention("Hey you! Give me your code!" -> true

3. Coin flip.

Write a function that flips a coin randomly, returning a String, either
“Heads” or “Tails”. Functions involving randomness are a little tricky to
write unit tests for. So you should just have your main() function print
the results from 10 or 20 coin flips to try out your function.

4. Die rolling

Write a function that returns the result of rolling a single 6-sided die. In
other words, when you call the function, it should randomly return 1, 2,
3,4,5, or 6.

26

2. STRINGS AND MATH

3. Loops & Algorithms

In this chapter we discuss the different loop constructs that you can use
in Python. We also practice implementing algorithms that use a loop to
calcluate a result.

27

28

Hello loops
#

hello_loops.py
#

for loop

3. LOOPS & ALGORITHMS

things = [1.23, 666, "juggling balls"]

print("things:")
for thing in things:
print (thing)

while loop

print ()
print("while loop")

value = 0O
while value < 5:

print(value)
value += 1

continue and break

print ()

print("continue and break")

value = 0O

while True:
value += 1
if valuel,2 ==
continue
print(value)

loop forever

even: do mothing

HELLO LOOPS

if value > 5:
break

Output:

things:

1.23

666

juggling balls

while loop

> W N - O

continue and break
1

3
5
7

break out of loop

29

30 3. LOOPS & ALGORITHMS

Hello algorithms
#

hello_algorithms.py
#

In each of these examples, we use a loop to perform a
calculation.

Find the first 'e' character in s.
def find_E(s):
for i in range(len(s)):
if s[i] == 'e!'

return i

s = "Dr. Kessner"
print("s: ", s)

print("find_E(s):", find_E(s));

Count the number of 'e' characters in s.

def count_E(s):

total = 0
for ¢ in s:
if ¢ == 'e':
total += 1

return total

print("count_E(s):", count_E(s));

Calculate sum of integers from 1 to n.

def sum(n):
total = 0

HELLO ALGORITHMS

for i in range(n+1):
total += i
return total

print ()

print("sum(3):", sum(3))
print("sum(4):", sum(4))
print("sum(5):", sum(5))

Output:

s: Dr. Kessner
find E(s): 5
count_E(s): 2

sum(3): 6
sum(4): 10
sum(5): 15

31

32 3. LOOPS & ALGORITHMS

Binimate
#

binimate.py
#

Full example with unit tests

binimate(s): kill every other character and return the result

def binimate(s):

result = ""
for i in range(len(s)):
if i%2==0:

result += s[i]
return result

unit test function: run the function binimate() and verify the
output is what you expect

def test_binimate(s, expected):
result = binimate(s)
print("s:", s, "expected:", expected, "result:", result)
if result == expected:
print ("Woohoo!")
else:

print ("Boohoo!")
multiple unit tests
test_binimate("Dr. Kessner", "D.Ksnr'");
test_binimate("Briley", "Bie");

test_binimate("Jasmine", "Jsie");
test_binimate("Sophia", "Spi");

Output:

BINIMATE

s: Dr. Kessner expected: D.Ksnr result:

Woohoo!

s: Briley expected: Bie result: Bie
Woohoo!

s: Jasmine expected: Jsie result: Jsie
Woohoo!

s: Sophia expected: Spi result: Spi
Woohoo!

D.Ksnr

33

34 3. LOOPS & ALGORITHMS

Coding Exercises: Loops and Algorithms

Implement the following functions, including unit tests. A few example
tests are shown. Add at least 2 more tests of your own for each function.

Sum of Squares

sum_of _squares(1l) -> 1
sum_of_squares(2) -> 1+4

=5
sum_of_squares(3) -> 1+4+9 =

14

Count Occurences

count_occurrences("Mississippi", "iss") -> 2
count_occurrences("banananana", "na") -> 4

Reverse String

reverse("bad") -> "dab"
reverse("Hello, world!") -> "!dlrow ,olleH"
reverse("tacocat") -> "tacocat"

Factorial

factorial(0) -> 1

factorial(l) -> 1

factorial(2) -> 2*1 = 2
factorial(3) -> 3%2%1 = 6
factorial(4) -> 4x3x%2%1 = 24
factorial(5) -> 5*%4x3%2%1 = 120

Interlace Two Strings

interlace("abc", "123") -> "alb2c3"
interlace("bed", "ras") -> "breads"

Find 2nd “a”

find_2nd("banana") -> 3
find_2nd("happy birthday") -> 12

CODING EXERCISES: LOOPS AND ALGORITHMS

Add “na” suffix

add_na(0) -> "ba"
add_na(1) -> "bana"
add_na(2) -> "banana"
add_na(3) -> "bananana"

Calculate Sum of Powers of 2

sum_powers(0) -> 0O
sum_powers(1) -> 0+1 = 1
sum_powers(2) -> 0+1+2 = 3
sum_powers(3) -> 0+1+2+4 = 7

sum_powers(4) -> 0+1+2+4+8 = 15

35

36

3. LOOPS & ALGORITHMS

Appendix A: Virtual
Environments and
Libraries

Python 3 has a module called venv for creating virtual environments for
your projects.

A virtual environment is an independent Python installation at a location
(subdirectory) that you specify. When you activate a virtual environment,
that particular Python installation will be used to run your programs.

If your project depends on external libraries, you can install these into
your virtual environment using the standard Python installation tool

pip.

This allows you to:
1) Keep each software project in a separate environment.
2) Specify your project’s dependencies precisely.

Here’s a quick start.

Create a new virtual environment
This creates the directory venv_name.
python3 -m venv venv_name

Often people use the name venv for the installation directory.

37

38 APPENDIX A: VIRTUAL ENVIRONMENTS AND LIBRARIES

Note: You do not want to include your virtual environment installation
directory in your repository. This folder will contain a large number of
binary files.

Activate the virtual environment

The new directory venv_name has a sub-directory bin, in which there is
a script called activate.

venv_name
|-- bin
|- activate

Calling this script with the source command activates the virtual envi-
ronment by setting your PATH and other environment variables.

source venv_name/bin/activate

This will also change your prompt to include (venv_name), to indicate
that the virtual environment is active.

Deactivate the virtual environment

deactivate

Install requirements into the virtual environment

First activate the virtual environment. Then calling pip install will
install stuff into the active virtual environment.

source venv_name/bin/activate
pip install library_name

Specfiy your dependencies in requirements.txt

It is common practice to list your dependencies in a file requirements. txt
in the root directory of your project:

matplotlib
numpy

Including requirements.txt in your source code repository allows you
to easily reproduce your development environment in another location.

39

Use the -r flag with pip install to install the libraries listed in
requirements.txt.

pip install -r requirements.txt

Set up your dev environment in another location

The requirements. txt file helps you set up a new development environ-
ment (for example to work on your project on another computer, or to
work with a collaborator).

python3 -m venv venv_name
source venv_name/bin/activate
pip install -r requirements.txt

40

APPENDIX A: VIRTUAL ENVIRONMENTS AND LIBRARIES

Exercises: Installing and using libraries

In these exercises you will install and try out various Python libraries.
For each example:

1.
2.

Create a new folder for your project.

Create a file in this folder called requirements.txt to specify the
libraries you want to install, one library per line:

emoji
Create a new virtual environment called venv.

python3 -m venv venv

. Activate the virtual environment.

source venv/bin/activate
Install the libraries listed in requirements.txt.
pip install -r requirements.txt

Copy and run the example code.

HELLO EMOJI 41

Hello emoji

#
hello_emoji.py
#

Installation: 'emoji' in requirements.txt
from emoji import *

names = [

:robot: ',
:pile_of_poo:',

:cat:',

':cat_face:',
:grinning_cat:',
':grinning_face:',
:upside-down_face:"',
:nerd_face:',
:skull_and_crossbones:',
' :person_cartwheeling: ',
':person_juggling: ',
:person_in_lotus_position:',
:circus_tent:',
:roller_skate:',

for name in names:
print(name, emojize(name))

42 APPENDIX A: VIRTUAL ENVIRONMENTS AND LIBRARIES

:robot: &
:pile_of_poo: &
scat:
:cat_face: L
:grinning_cat: &
:grinning_face: &
rupside—down_face: (o
:nerd_face: @@
iskull_and_crossbones: =
:person_cartwheeling: 1
:person_juggling:
:person_in_lotus_position:
rcircus_tent: g,
:roller_skate: &u

HELLO REQUESTS 43

Hello requests
#

hello_requests.py
#

Installation: 'requests' in requirements.tzt
import requests

The "requests’ library allows you to send HTTP requests, for
accessing web pages or web APIs.
https://requests.readthedocs. i0

H*

Weather API documentation
https://www.weather.gov/documentation/services-web-api

National Weather Service (NWS)
htips://www.weather.gov/

NOAA
https://www.noaa.gov/
def main():

https://api.weather.gov/points/{latitudelt, {longitude}
url = "https://api.weather.gov/points/34.0699142,-118.3294098"

Use the “get() function to retrieve a webpage (GET request).
response = requests.get(url)
Status code 200 is success.

print("status_code:", response.status_code)
print ()

44 APPENDIX A: VIRTUAL ENVIRONMENTS AND LIBRARIES
if response.status_code != 200:
print ("Error.")
return
The response from a webpage will generatlly be HTML. The
response from a web API will usually be in JSON format, which
you can think of as a bunch of nested dictionaries.
result_json = response.json()
properties = result_json['properties']
city = properties['relativeLocation']['properties']['city']
forecast_url = properties['forecast']
print("city:", city)
print("forecast_url:", forecast_url)
print ()
Accessing the actual forecast requires a second GET request.
response = requests.get(forecast_url)
properties = response.json() ['properties']
periods = properties['periods']
for period in periods:
print(period['name'])
print (period['detailedForecast'])
print ()
if __name__ == '__main_ _':
main()
Output:

status_code: 200

city: West Hollywood
forecast_url: https://api.weather.gov/gridpoints/L0X/152,46/forecast

HELLO REQUESTS 45

Today
Patchy fog before 1lam. Mostly sunny, with a high near 80.
Southwest wind 5 to 10 mph.

Tonight
Patchy fog after 5am. Partly cloudy, with a low around 64. South
wind O to 10 mph.

Saturday
Patchy fog before 1lam. Mostly sunny, with a high near 80. South
southwest wind O to 10 mph.

Saturday Night
Patchy fog after 1lpm. Partly cloudy, with a low around 64. South
wind O to 10 mph.

Sunday
Patchy fog. Partly sunny, with a high near 82. South southwest wind
0 to 10 mph.

Sunday Night
Patchy fog before 11pm. Partly cloudy, with a low around 63.

Monday
Patchy fog after 5pm. Mostly sunny, with a high near 78.

Monday Night
Patchy fog. Cloudy, with a low around 63.

Tuesday
Patchy fog before 1lam. Mostly sunny, with a high near 77.

Tuesday Night
Patchy fog after 1ipm. Partly cloudy, with a low around 62.

Wednesday
Patchy fog before 1lam. Mostly sunny, with a high near 76.

Wednesday Night

46 APPENDIX A: VIRTUAL ENVIRONMENTS AND LIBRARIES

Partly cloudy, with a low around 61.

Thursday
Mostly sunny, with a high near 76.

Thursday Night
Partly cloudy, with a low around 61.

HELLO, JUYPTER LAB! 47

Hello, Juypter Lab!

1. Create your virtual environment, and install jupyterlab via your
requirements. txt file.

2. On the command line, start the Juypter server with the command
jupyter lab. Stop the server with ctrl-c.

3. Your browser should open to a Jupyter Lab page.

Project Jupyter | Installing . X | @ Hello emoji JupyterLab

C @ @ localhost:8888/lab Q % @ £

: File Edit View Run Kernel Tabs Settings Help
- *+ Cc Y [Launcher ar %
./
o Name - Modified lE‘ Notebook &
@ content_java 7d ago
= ma content_python 9h ago
@ docs 2h ago ﬁ
*. B html_java 9m ago
@ html_python 3m ago Python 3
B images 2h ago (ipykernel)
B pdf 9m ago
B stage_java 9m ago Console
B stage_python 3m ago
B venv 2d ago
i venv_test 12m ago ﬁ
@ assemble_chapt... 2h ago
[Makefile 3h ago &‘ci‘::]j)
M notes.md last mo.
Y: pandoc_defaults... 7d ago
Y: pandoc_defaults... 9h ago Other
Y: pandoc_defaults... 12d ago
Y: pandoc_defaults... 12d ago —_—
Y: pandoc_defaults... 12d ago E
Y: pandoc_defaults... 2h ago Terminal Text File
Y: pandoc_metadat... 9h ago
Y: pandoc_metadat... 9h ago
[pandoc_templat... 12d ago M p
[pandoc_templat... 21d ago L4
[pandoc_templat... 21d ago Markdown File Python File
M readme.md 18d ago
[requirements.txt 17m ago
@ stage_chapters.py 12d ago E
O style.css 2d ago
Show
Contextual Help
Simple 0 & Launcher 0 [\

e ——————————————————————

48 APPENDIX A: VIRTUAL ENVIRONMENTS AND LIBRARIES

Hello py5

pyb is Processing for Python.
https://py5coding.org/

This is the “module” mode hello program.

Information about the different py5 modes here:
https://pybcoding.org/content /py5__modes.html

#
hello_pyb.py
#

import pyb

def setupQ:
py5.size (300, 200)
py5.rect_mode (py5.CENTER)

def draw():
py5.rect (py5.mouse_x, py5.mouse_y, 10, 10)

py5.run_sketch()

https://py5coding.org/
https://py5coding.org/content/py5_modes.html

	Introduction
	About the book
	About the author

	0. Hello, world!
	Hello
	Basics
	Loops
	Sequences
	Coding Exercises: Hello

	1. Functions and Testing
	Functions
	Monkey trouble
	Coding Exercises: Functions and Testing

	2. Strings and Math
	Hello strings
	Hello math
	Hello random
	Coding Exercises: Strings and Math

	3. Loops & Algorithms
	Hello loops
	Hello algorithms
	Binimate
	Coding Exercises: Loops and Algorithms

	Appendix A: Virtual Environments and Libraries
	Exercises: Installing and using libraries
	Hello emoji
	Hello requests
	Hello, Juypter Lab!
	Hello py5

