
BIOINFORMATICS APPLICATIONS NOTE Vol. 24 no. 21 2008, pages 2534–2536
doi:10.1093/bioinformatics/btn323

Genome analysis

ProteoWizard: open source software for rapid proteomics tools
development
Darren Kessner1,∗, Matt Chambers2, Robert Burke1, David Agus1and Parag Mallick1,3,∗
1Spielberg Family Center for Applied Proteomics, Cedars-Sinai Medical Center, 2Department of Biochemistry,
Vanderbilt University, Nashville, TN and 3Department of Chemistry & Biochemistry, University of California,
Los Angeles, CA, USA

Received on April 18, 2008; revised on May 21, 2008; accepted on June 18, 2008

Advance Access publication July 7, 2008

Associate Editor: John Quackenbush

ABSTRACT

Summary: The ProteoWizard software project provides a modular
and extensible set of open-source, cross-platform tools and libraries.
The tools perform proteomics data analyses; the libraries enable
rapid tool creation by providing a robust, pluggable development
framework that simplifies and unifies data file access, and performs
standard proteomics and LCMS dataset computations. The library
contains readers and writers of the mzML data format, which has
been written using modern C++ techniques and design principles
and supports a variety of platforms with native compilers. The
software has been specifically released under the Apache v2 license
to ensure it can be used in both academic and commercial projects.
In addition to the library, we also introduce a rapidly growing set
of companion tools whose implementation helps to illustrate the
simplicity of developing applications on top of the ProteoWizard
library.
Availability: Cross-platform software that compiles using
native compilers (i.e. GCC on Linux, MSVC on Windows and
XCode on OSX) is available for download free of charge, at
http://proteowizard.sourceforge.net. This website also provides
code examples, and documentation. It is our hope the ProteoWizard
project will become a standard platform for proteomics development;
consequently, code use, contribution and further development are
strongly encouraged.
Contact: darren@proteowizard.org; parag@ucla.edu
Supplementary information: Supplementary data are available at
Bioinformatics online.

1 INTRODUCTION
Historically, three factors have led to a significant overhead in
developing proteomics software. The first challenge of writing
analysis tools is supporting data generated by different vendors; each
vendor typically encodes their data in a vendor-specific, proprietary,
closed format, with access restricted to a particular operating system.
To simplify cross-vendor software development two open formats
were created (Pedrioli et al., 2004), which led to the second
challenge: reading and writing of these open formats. No single,
natively-compiling cross-platform, open-source software library,
has emerged to allow academic and commercial groups to encode or

∗To whom correspondence should be addressed.

access encoded data. Despite this, the existence of open standards
greatly simplified development, and numerous open source software
projects, such as the Trans-Proteomic Pipeline (TPP) (Keller et al.,
2005), the OpenMS Proteomic Pipeline (TOPP) (Kohlbacher et al.,
2007) and the Computational Proteomics Analysis System (CPAS)
(Rauch et al., 2006) were built upon the open formats. More recently,
the HUPO-PSI and Institute for Systems Biology have taken an
important step in simplifying proteomics software development by
creating the mzML data format standard to be released in June 2008
(Orchard et al., 2007). The third challenge is the lack of a single,
standard cross-platform library that performs common calculations,
such as protein digestion, mass computation, peak integration,
charge state detection and isotope deconvolution. Consequently,
these calculations have been repeatedly implemented in the course
of developing more sophisticated tools.

2 DESIGN AND IMPLEMENTATION
ProteoWizard has been designed from the ground-up with testability
in mind. Each code module has a unit test that runs automatically
during the build process. In addition, the data model has ‘diff’
calculations built in, for validating data after format conversion or
preprocessing.

As illustrated in Figure 1, ProteoWizard is built from many
independent libraries, grouped together in dependency levels. Each
library depends only on libraries in lower levels of the hierarchy.
The lowest layer, the utility layer, contains independent classes that
perform computations applicable in a wide variety of situations
such as binary to text encoding, XML parsing and mathematical
calculations that are common in data analysis. Abstract interfaces are
used in analysis modules to facilitate comparison between different
algorithms. Below we describe the data and analysis layers in greater
detail.

2.1 The data layer
The ProteoWizard data layer abstracts the source data file, hiding
any format-specific details. The underlying data model of the data
layer is a one-to-one translation from mzML data elements to C++
data structures. This mapping is shown in the data model details
in the Supplementary Material. Metadata fields are encoded in
<cvParam> elements, which refer to terms (by their accession
number) in a controlled vocabulary (CV) maintained in a central

© 2008 The Author(s)
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/
by-nc/2.0/uk/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

 at U
C

LA
 B

iom
edical Library S

erials on F
ebruary 2, 2011

bioinform
atics.oxfordjournals.org

D
ow

nloaded from
 

http://proteowizard.sourceforge.net
http://creativecommons.org/licenses/
http://bioinformatics.oxfordjournals.org/


ProteoWizard

Fig. 1. ProteoWizard architecture.

repository by the HUPO-PSI. ProteoWizard parses the CV file at
compile time and generates C++ code, which allows convenient,
typesafe handling of the CV terms.

The data model uses a virtual interface for accessing spectrum
lists, to allow lazy evaluation when accessing the spectra contained
in a data file, improving data access time, as files can be read
incrementally as needed.

Vendor proprietary formats are handled with a plug-in reader
interface. ProteoWizard currently supports reading of mzML,
mzXML and Thermo RAW files. As vendor libraries are subject
to platform restrictions some features of ProteoWizard may only
be available if a vendor library is found at runtime. Collaboration
with other labs (Vanderbilt, Nashville, TN, ISB, Seattle, WA) are
underway to implement readers for all vendor formats.

Data writing is also handled in a modular, extensible manner,
with C++ iostream serialization currently supported for mzML and
mzXML. Because ProteoWizard has been released with a permissive
license, it can be incorporated in commercial software projects.

2.2 The analysis layer
The analysis layer contains all scientific computation, in reusable
modules that are independent of platform and data format. Currently
available are modules for convenient access to the underlying data
model, spectrum data caching, data and metadata extraction, selected
ion chromatogram calculation and pseudo-2D-gel image creation.
There are also independent modules for handling chemical formulas,
peptide calculations and isotope envelopes. More analysis modules
are currently in development, with an emphasis on establishing
standard interfaces for common proteomics computations, such as
peak picking, isotope de-convolution and precursor estimation. Our
goal is to work collaboratively to create an analysis infrastructure in
which experts in a particular area will be able to contribute a module
that can then be plugged into various software tools. This will allow,
for example, an expert in signal processing to create and contribute
a peak picker, without having to handle details about file formats,
operating system or command line configuration.

2.3 The tools layer
The tools layer code is responsible only for regulating interaction
between the user and the analysis modules. Several tools have been
implemented using the ProteoWizard Library including:

• msConvert: data format conversion from vendor proprietary
formats to mzML and mzXML.

• msDiff : comparison of two data files, for validation of
conversion and preprocessing.

Fig. 2. Architecture of msAccess tool (utility and data layers).

Fig. 3. msPicture output.

• msAccess: command line access to mass spec data files,
including spectrum binary data and metadata, selected ion
chromatograms. The modular layout of msAccess is shown in
Figure 2.

• msPicture: pseudo-2D gel image creation tool. msPicture can
read from a variety of formats to generate dataset images.
In addition, if given a pepXML file, msPicture can denote
triggered MS/MS, colored by peptideProphet score. We show
an example output in Figure 3.

The hello_analyzer program has been provided in the code
example supplement as a demonstration of how easily one can use
Proteowizard for creating analysis tools.

3 SUMMARY AND FUTURE DIRECTIONS
As the proteomics field continues to grow, an increasing number of
research groups are writing custom software for data analysis. Our
goal is for ProteoWizard to become a repository where proteomics
software developers can share their work, and benefit from the
work of others. We welcome contributions of existing code, or new
projects that will benefit the proteomics community. Already, the
TPP tools will be using ProteoWizard to support mzML in the next
major release, in advance of the formal release of mzML at ASMS
2008. SWIG bindings are currently being developed to allow access
to the ProteoWizard Library from JAVA, Python, PERL and R.

2535

 at U
C

LA
 B

iom
edical Library S

erials on F
ebruary 2, 2011

bioinform
atics.oxfordjournals.org

D
ow

nloaded from
 

http://bioinformatics.oxfordjournals.org/


D.Kessner et al.

ACKNOWLEDGEMENTS
The authors would like to thank Roland Luethy and Jonathan
Katz for contributing towards the development and application of
ProteoWizard, Natalie Tasman for code contributions, Brian Pratt for
RAMP implementation and Eric Deutsch, the ISB NHLBI Proteome
Center and the HUPO-PSI for help with ProteoWizard’s mzML
interfaces.

Funding: This work has been supported by the NCI CCNE-TR, the
Wunderkinder Foundation and by the Bennioff Foundation. M.C. is
supported by NIH Grants: R01 CA126218 and U24 CA126479.

Conflict of Interest: none declared.

REFERENCES
Keller,A. et al. (2005) A uniform proteomics MS/MS analysis platform utilizing open

XML file formats. Mol. Syst. Biol., 1, 1–8.
Kohlbacher,O. et al. (2007) TOPP–the OpenMS proteomics pipeline. Bioinformatics,

23, e191–e197.
Orchard,S. et al. (2007) Five years of progress in the standardization of proteomics

data 4th annual spring workshop of the HUPO-proteomics standards initiative
April 23–25, 2007 Ecole Nationale Superieure (ENS), Lyon, France. Proteomics,
7, 3436–3440.

Pedrioli,P.G. et al. (2004) A common open representation of mass spectrometry data
and its application to proteomics research. Nat. Biotechnol., 22, 1459–1466.

Rauch,A. et al. (2006) Computational Proteomics Analysis System (CPAS): an
extensible, open-source analytic system for evaluating and publishing proteomic
data and high throughput biological experiments. J. Proteome Res., 5, 112–121.

2536

 at U
C

LA
 B

iom
edical Library S

erials on F
ebruary 2, 2011

bioinform
atics.oxfordjournals.org

D
ow

nloaded from
 

http://bioinformatics.oxfordjournals.org/

