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Abstract

DNA samples are often pooled, either by experimental design or because the sample itself is a mixture. For example,
when population allele frequencies are of primary interest, individual samples may be pooled together to lower the cost
of sequencing. Alternatively, the sample itself may be a mixture of multiple species or strains (e.g., bacterial species
comprising a microbiome or pathogen strains in a blood sample). We present an expectation–maximization algorithm for
estimating haplotype frequencies in a pooled sample directly from mapped sequence reads, in the case where the possible
haplotypes are known. This method is relevant to the analysis of pooled sequencing data from selection experiments,
as well as the calculation of proportions of different species within a metagenomics sample. Our method outperforms
existing methods based on single-site allele frequencies, as well as simple approaches using sequence read data. We have
implemented the method in a freely available open-source software tool.
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Introduction
Pooled sequencing is a common experimental method in
which DNA samples from multiple individuals are sequenced
together. In some contexts, the pooling of individual samples
is performed by the researcher; in others, the sample itself is a
mixture of multiple individuals. When population allele fre-
quencies are of primary interest, pooled sequencing
approaches can reduce the cost and labor involved in
sample preparation, library construction, and sequencing
(Cutler and Jensen 2010; Futschik and Schlötterer 2010;
Kofler et al. 2011; Huang et al. 2012; Orozco-terWengel
et al. 2012).

For example, in experimental evolution studies, popula-
tions are selected for extreme values of a trait over several
generations, followed by pooled sequencing to calculate allele
frequencies at polymorphic sites across the genome (Nuzhdin
et al. 2007; Burke et al. 2010; Earley and Jones 2011; Turner
et al. 2011; Zhou et al. 2011). Typically, differences in single-site
allele frequencies between an experimental population and
a control population (or between two experimental popula-
tions selected in opposite directions) are used to identify
regions of the genome that may have undergone selection
during the course of the experiment and thus contribute to
the trait of interest. However, localizing such regions would be
improved if haplotype frequencies were more easily estimated
from pooled data, as many of the most powerful tests for
selection rely on haplotype information (Voight et al. 2006;
Sabeti et al. 2007).

In certain cases, haplotype frequency estimation may be
more feasible than others, such as when the investigator has

prior knowledge about the founders of the pooled sample.
For example, Turner and Miller (2012) used inbred lines from
the Drosophila Genetic Reference Panel (DGRP) (Mackay
et al. 2012) to create the founding population for the selection
experiment. In such an experiment, individual haplotypes
in the evolved populations will be, apart from de novo mu-
tations, mosaics of haplotypes from the founding population,
whose sequences are known. This structure should make
it simpler to estimate haplotype frequencies, and in turn
detect regions harboring adaptive variation, by searching for
haplotypes that have increased in frequency locally during the
experiment.

In many other contexts, biological samples are naturally
pooled, and the researcher is interested in the relative pro-
portions of various species or strains within the sample. For
example, malaria researchers interested in drug resistance
and vaccine efficacy testing have developed several labora-
tory and computational techniques for determining the
proportions of different malaria parasite strains in blood
samples (Cheesman et al. 2003; Hunt et al. 2005; Takala
et al. 2006; Li et al. 2007; Hastings and Smith 2008;
Hastings et al. 2010). In metagenomics studies, one major
interest is the relative abundance of different microbial
strains and species in pooled samples from different tis-
sues/habitats (Ley et al. 2006; Human Microbiome Project
Consortium 2012). Sequence reads from 16S rRNA are com-
monly used to estimate these frequencies by classifying
reads by taxon and counting the number of reads in each
category (Mizrahi-Man et al. 2013). In these examples,
canonical haplotypes (e.g., 16S reference sequence) of
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many species of interest are known, and accurate estimates
of relative frequencies of the known species are of great
importance.

Indirect estimation of haplotype frequencies from
unphased genotype data has a long history (see Niu [2004]
for a review of these methods). Several approaches for esti-
mating haplotype frequencies from pools containing multiple
individuals have focused on the use of single-nucleotide
polymorphism (SNP) allele frequencies obtained by array-
based genotyping (Ito et al. 2003; Pe’er and Beckmann 2003;
Wang et al. 2003; Yang et al. 2003; Kirkpatrick et al. 2007;
Zhang et al. 2008; Kuk et al. 2009). Some examples of this
class of methods have incorporated prior knowledge about
haplotypes in the sample into the estimation (Gasbarra et al.
2009; Pirinen 2009). Most recently, Long et al. (2011) have
proposed a method for estimating haplotype frequencies
from SNP allele-frequency data obtained by pooled se-
quencing, using a regression-based approach with known
haplotypes.

Pooled sequence data provide two important sources of
information beyond single-site allele frequencies: haplotype
information from sequence reads that span multiple variant
sites and base quality scores, which give error probability
estimates for each base call. Here, we introduce a method
to use this additional information to estimate haplotype
frequencies from pooled sequence data, in the case where
the constituent haplotypes are known. This method uses a
probability model that naturally incorporates uncertainty in
the reads by using the base quality scores reported with the
sequence data. The method obtains a maximum likelihood
estimate of the haplotype frequencies in the sample by an
expectation–maximization (EM) algorithm (Dempster et al.
1977). We present results from realistic simulated data to
show that the method outperforms allele-frequency-based
methods, as well as simple approaches that use sequence
reads. The use of a fixed list of known haplotypes allows
the algorithm to use data from much larger genomic regions
than algorithms that enumerate all possible haplotypes in a
region, which leads to much improved haplotype frequency
estimates. We also explore the effects of unknown haplotypes
being included in the mixture and specify conditions affecting
the accuracy of the estimation. We have implemented the
method in an open-source software tool harp (see authors’
websites for software link).

New Approaches
We assume that there are H haplotypes represented in the
pool and that the sequence reads have been generated ran-
domly according to the frequencies of the haplotypes.
Informally, we use haplotype information contained in an
individual read to probabilistically assign that read to one
or more of the known haplotypes (fig. 1) and then use the
probabilistic haplotype assignments to estimate the haplo-
type frequencies.

Probability Model

Let f ¼ f1, . . . , fHð Þ be the frequencies of the H haplotypes in
the genomic region of interest. We can think of N sequence

reads r ¼ r1, . . . , rNð Þ as being independently generated as
follows. To generate read rj:

� Choose the haplotype �j to copy from: �j � DiscreteðfÞ.
� Choose a starting position uniformly at random in the

genomic region and copy read rj from haplotype �j starting
at the chosen position.
� Draw base quality scores for the read from a fixed distri-

bution (which can be determined empirically).
� Introduce errors in the sequence read, with the probability

of error in a base call given by the base quality score at that
position.

In practice, haplotypes may not be perfectly known,
or there may be segregating variation within the strain
represented by a particular haplotype. In such cases,
International Union of Pure and Applied Chemistry ambigu-
ous base codes (e.g., R for purine, Y for pyrimidine, and N
for any) may be used in place of the standard bases (A, C, G,
and T) to indicate the uncertainty. We incorporate these
cases into our probability model by assuming the true base
at each segregating site is sampled from a discrete distribution
with probabilities determined by the allele frequencies at
that site within the strain (which may be known a priori or
assumed to be uniform).

Haplotype Likelihood

Calculating the likelihood of a set of haplotype frequencies
given, read data under this model can be carried out as fol-
lows. Let Lj be the length of the jth read rj, let ðrj½1�, . . . , rj½Lj�Þ

be the base calls, and let qj ¼ ðqj½1�, . . . , qj½Lj�Þ be the
base quality scores. Also, let ð�j½1�, . . . , �j½Lj�Þ be the corre-
sponding bases of haplotype �j. At read position i, qj½i�
is the probability of sequencing error at that

FIG. 1. Haplotype information from individual reads can be combined
across a genomic region to obtain haplotype frequency estimates.
In this cartoon, there are four known haplotypes (black, green, blue,
and orange), with sequence data coming from a pool containing 25%
green, 25% blue, and 50% orange haplotypes. Each read is probabilisti-
cally assigned to the known haplotypes. Some reads can be assigned
with great certainty, for example, the reads coming from the blue
haplotype that cover two neighboring variant sites. Other reads (repre-
sented by two colors) are assigned with less certainty.
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position: qj½i� ¼ Pðrj½i� 6¼ �j½i�Þ. Note that for paired-end
data, rj represents a read pair coming from a single haplotype
and that the positions within the read may not be contiguous.

We have Pð�j,rj j f ,qjÞ ¼ Pð�j j f ÞPðrj j �j,qjÞ. The first term
Pð�j j f Þ is given by the discrete distribution with probabilities
f, and the second term Pðrj j �j,qjÞ, the “haplotype likelihood,”
can be calculated from the base quality scores, as follows.

First, we assume that sequencing errors within a single read
are independent of each other:

Pðrj j �j,qjÞ ¼
YLj

i¼1

Pðrj½i�j�j½i�,qj½i�Þ:

Next, we need to specify how to calculate the terms in the
above product, that is, the probability of an observed base,
given the true base and the base quality at that position. For
simplicity, we assume that each of the three incorrect bases
will be observed with equal probability:

P rj½i�j�j½i�,qj½i�
� �

¼
1� qj½i� if rj½i� ¼ �j½i�
qj½i�=3 if rj½i� 6¼ �j½i�

�
:

More generally, we note that we can use a base error matrix
(parametrized by base quality score) to allow for unequal
probabilities and that these probabilities can be estimated
from the data by considering the monomorphic sites in the
sample.

Note that if position i is a segregating site in the strain
represented by haplotype �j, the likelihood is calculated by
summing over the possible bases:

Pðrj½i�j�j½i�,qj½i�Þ ¼X
b2fA,C,G,Tg

Pðrj½i�j�j½i� ¼ b,qj½i�Þ Pð�j½i� ¼ bÞ,

where Pð�j½i� ¼ bÞ is the frequency of base b at that site
within the strain. For sites where the possible bases are
known, but not the allele frequencies, we set the allele fre-
quencies to be equal, for example, 0.5 for biallelic sites and
0.25 for sites with no information.

For clarity, we suppress the dependence on the base
quality scores in what follows.

Simple Approaches

We explored two simple approaches for estimating haplotype
frequencies. The first method is a simple string match
algorithm, where sequence reads are fractionally assigned
(with equal weight) to haplotypes with which they are iden-
tical up to a specified maximum number of mismatches.
For example, a read that matches two haplotypes is assigned
0.5 to each. The fractional assignments are then summed, to
obtain counts for each haplotype, and dividing by the number
of reads gives the haplotype frequency estimate.

The second method, which we call a “soft” string match,
uses the probability model described earlier to calculate the
vector of haplotype likelihoods lj for each read rj. Thus, the
soft string match makes use of the base quality scores from
the reads. The haplotype likelihood vector lj is normalized,
so that the components sum to 1, which we take to be our

probabilistic haplotype assignment. As with the fractional
assignments above, the probabilistic assignments are aver-
aged to obtain the haplotype frequency estimate.

EM Algorithm

In addition to the simple approaches, we developed a full
likelihood approach to obtain maximum likelihood estimates
of the haplotype frequencies under the probability model
described earlier.

We assume that our reads are generated independently, so
our complete data likelihood is:

Lðf j �,rÞ ¼ Pð�,r j f Þ ¼
YN

j¼1

Pð�j,rj j f Þ:

We observe the reads r but treat the haplotype assign-
ments � as missing data, so we are interested in the marginal
likelihood,

Lðf j rÞ ¼ Pðr j f Þ ¼
X
�

Pð�,r j f Þ,

which we maximize by iteratively calculating haplotype fre-
quency estimates by the EM algorithm: f ð0Þ, f ð1Þ, . . .

First we describe the iteration step of the algorithm; we
assume we have f ðiÞ and show how to obtain f ði+1Þ. In section
Materials and Methods, we show that this is the formal EM
algorithm of Dempster et al. (1977).

We let lj,h ¼ Pðrj j �j ¼ hÞ and let lj ¼ lj,1, . . . , lj,H
� �

be
the vector of haplotype likelihoods for read j. Note that for a
given sequence read rj, the haplotype likelihood vector lj is
determined by the variant sites covered by the read, up to a
proportionality constant. Also note that the haplotype likeli-
hood vectors can be calculated once and cached, before the
actual EM iteration.

Given f ðiÞ, we define pj ¼ pj,1, . . . , pj,H

� �
to be the haplo-

type posterior vector for read j, where

pj,h ¼ Pð�j ¼ h j rj, f ðiÞÞ:

Intuitively, pj is a probabilistic haplotype assignment of read rj,
with each component pj,h representing the probability that
the read came from haplotype h (given our current haplotype
frequency estimate f ðiÞ). Note that:

Pð�j ¼ h j rj,f
ðiÞÞ / Pðrj j �j ¼ hÞPð�j ¼ h j f ðiÞÞ

¼ lj,hf ðiÞh ,

so pj can be obtained by taking the component-wise prod-
uct lj � f ðiÞ, and normalizing, so that the vector components
sum to 1. As a special case, if f ð0Þ is uniform, then in the first
iteration, pj is just lj normalized.

Our updated estimate f ði+1Þ is given by the average of the
haplotype posterior vectors:

f ði+1Þ ¼

P
j

pj

N
:

Finally, we must specify how to choose our initial haplo-
type frequency estimate f ð0Þ, as well as convergence criteria
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for the iteration. For our first initial estimate, we use the
uniform distribution f ð0Þh ¼ 1=H. We also use additional
random initial estimates drawn from a symmetric Dirichlet
distribution to start multiple runs of the algorithm, because
there is a possibility that the EM algorithm will climb to
a nonglobal local maximum on the likelihood surface. For
the termination condition, we specify a threshold " and
halt the iteration when the squared distance between esti-
mates falls below the threshold: j f ði+1Þ � f ðiÞj2 < ". In prac-
tice, we found a value of " ¼ 10�8 to work well, and this value
is used in the results presented below.

Base Quality Score Recalibration

We observed inconsistencies between the reported base
quality scores in our experimental data sets and empirical
error rates based on sequence reads covering monomorphic
sites in the known haplotypes (see Results), which motivated
the development of a recalibration method to correct for
these inconsistencies.

Illumina base quality scores have different interpretations,
depending on the Illumina version. In our experimental data
set, corresponding to Illumina versions 1.5–1.7, the scores
range from 2 to 40, with the score q representing an error
probability given by the Phred scale:

PðerrorÞ ¼ 10�q=10:

For example, a base quality score of 20 gives an error proba-
bility of 1/100. The special score of 2 indicates that the base
should not be used in downstream analysis.

To recalibrate, we examine monomorphic sites to calculate
an observed error rate PobsðerrorÞðqÞ for each possible base
quality score q. These observed error rates can then be used
directly in the haplotype likelihood calculation in place of the
Phred scale error rates or to create a new BAM file with
recalibrated base quality scores.

Haplotype Likelihood Filtering

The EM algorithm described earlier relies on the assumption
that we know the sequences of the haplotypes found in the
pool and that the pool has no contamination from unknown
species. Although investigating the effects of unknown
haplotypes species in the pool, we found that in the case
where the unknown is sufficiently unrelated to the known
haplotypes (known species, in the case of 16S sequences),
reads from the unknown can be filtered out on the basis of
the haplotype likelihoods.

For each sequence read, the maximum haplotype likeli-
hood will usually be attained by the haplotype from which
the read was derived. Building on this, we can calculate the
distribution of the maximum haplotype likelihood of the
sequence reads under the assumption that the pool contains
only known haplotypes, based on the empirical base quality
score distribution of the data (see Materials and Methods for
details). Using this “null” distribution, we can filter out reads
whose maximum haplotype likelihood falls outside a specified
range (fig. 8A). In our simulations, we obtained good results
by filtering out reads whose maximum haplotype likelihood

was less than 2 standard deviations (SDs) below the mean
of this distribution (fig. 8C).

Results

Comparison with Existing Allele-Frequency-Based and
Simple Sequence-Based Methods

We first evaluated the performance of the EM algorithm in
comparison to single-site allele-frequency-based methods and
the simple-sequence-based methods discussed earlier (see
New Approaches). To represent the allele-frequency-based
methods, we chose hippo, which is a freely available program
that has been shown to outperform other allele-frequency-
based methods for estimating haplotype frequencies (Pirinen
2009). One property of this class of methods is that all
possible haplotypes in the region are considered during the
estimation. This results in an exponential growth in the
number of haplotypes (and thus memory usage and algo-
rithm running time) as the region width increases. To
improve performance, the hippo method allows one to
specify known haplotypes, which we do here. We found it
difficult to obtain results on our simulated data for regions
larger than approximately 2 kb (though this distance scale is
driven largely by the relatively high Drosophila-specific levels
of diversity we simulated here).

In this comparison, we simulated data from a pool of
20 haplotypes with 100-bp paired-end sequence reads and
200� pooled coverage, with 100 replicates each from geno-
mic regions ranging in size from 500 bp to 50 kb.

We found that the simple methods using sequence reads
(string match and soft string match) outperformed the
method based on single-site allele frequencies and that the
EM algorithm performed vastly better than all the other
methods (fig. 2). The soft stringmatch method showed a
distinct improvement over the stringmatch method, due
to the incorporation of information from the base quality
scores. We also note that the EM algorithm performed
the estimation using 162 reference haplotypes and accurately
reported zero frequencies for the haplotypes not present in
the pool.

The EM algorithm’s increased performance can be attrib-
uted to the sharing of information across all the reads in the
genomic region. In contrast to the other methods, the EM
algorithm’s performance improves as the width of the region
increases. This improvement comes from the fact that more
variant sites are available to distinguish between haplotypes,
in addition to the increased amount of data on which to base
the inference.

Effects of Region Width, Coverage, Read Length, and
Sequencing Error

We next evaluated the performance of the EM algorithm with
respect to increasing region width and coverage. In this eval-
uation, we simulated pooled data (100-bp paired end) from
all 162 haplotypes, 100 replicates each in genomic regions
ranging in size from 25 to 400 kb, at coverages ranging from
25� to 300�. We found that performance increases substan-
tially as coverage increases, especially at the lower coverage
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levels (25�–100�) and also as the region width increases
(fig. 3A). In particular, for larger regions (�100 kb) at moder-
ate pooled coverage (200�), the sum of squared errors is less
than 10�4, which corresponds to a root mean squared error
of less than 0.1% per haplotype.

We also evaluated the effect of increasing read lengths on
the performance of the EM algorithm. We simulated
paired-end sequence data in a 200 kb region with sequence
read lengths ranging from 50 to 500 bp (100 replicates each).
In each case, we generated 200,000 read pairs (200� coverage
for 100-bp reads). As expected, longer read length also
increases performance, due to the additional haplotype

information contained in individual reads (fig. 3B). Note
that the effect of increased read length is equivalent to the
effect of increasing SNP density, due to the fact that differ-
ences in haplotype likelihoods between strains/species are
determined by the variant sites covered by the sequence
reads.

Finally, we studied the effects of sequence read errors on
the haplotype frequency estimation. We calculated an empir-
ical base quality score distribution, which we shifted to obtain
simulated data sets with specified error rates. In our experi-
mental data sets, the sequence error rate calculated from the
base quality scores was generally in the range of 0:05� 0:07
(errors per base call), depending on the region. On simulated
data sets (162 haplotypes, 200 kb region, 100-bp paired-end
reads, 200� coverage), we found that the EM algorithm
maintains good performance (sum of squared errors
�10�4, average error< 0.1%), even with error rates of
2–3� empirical error rates (fig. 3C).

Effects of Haplotype Diversity

We investigated the effects of haplotype diversity, quantified
by the Shannon entropy (in natural log units) of the true
haplotype frequency distribution, on the performance of
the EM algorithm. We simulated pooled 100-bp paired-end
sequence data from 162 haplotypes at 200� coverage in a
200-kb region. We generated the haplotype frequencies using
symmetric Dirichlet distributions with parameter values rang-
ing from 0.005 to 10, for a total of 550 replicates, which were
binned by Shannon entropy (fig. 4). We found that the
EM algorithm performs best for low entropy frequency dis-
tributions, where there are a few haplotypes at high frequen-
cies, with the rest at low frequencies. Performance degrades
as the entropy increases, with a slight improvement for
high-entropy (nearly uniform) distributions. This behavior
can be explained by the fact that missing information leads
to uniform estimates, which will give better results for
near-uniform distributions.
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FIG. 3. Performance of the EM algorithm increases with coverage, region width, and read length and is robust to sequencing errors. (A) Performance of
the EM algorithm increases with both coverage and width of the region used for the estimation. (B) The EM algorithm performs better with longer
reads, which provide more haplotype information. (C) The EM algorithm maintains good performance with increasing sequence read error rate.
Empirical error rates were found to be in the range of 0.05–0.07 errors per base call. In all simulations, we simulated paired-end pooled sequence data
from 162 haplotypes at randomly drawn frequencies, with 100 replicates per parameter value level. Nonvarying parameters were held at fixed values
representative of our experimental data (read length 100 bp, read error rate 0.06, coverage 200�, and region width 200 kb).
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Effects of Inaccurate Base Quality Score Reporting

The computation of haplotype likelihoods is dependent
on the correct reporting and interpretation of base quality
scores. By looking at monomorphic sites in our experimental

data sets, we calculated an observed error rate PobsðerrorÞ for
each possible base quality score, which maps to an empirical
base quality score qobs according to:

qobs ¼ �10 log10 PobsðerrorÞ:

We observed that the reported base quality scores in our
experimental data sets were consistently inaccurate
(fig. 5A). This motivated the development of a recalibration
method to correct for inaccurate reporting of base quality
scores (see New Approaches).

To test our recalibration method, we simulated data sets
(162 haplotypes, 100-bp paired-end reads, 200 kb region,
200� coverage) using the empirical error rate for each base
quality score to generate sequence read errors. For each of
100 replicates, we ran the EM algorithm with and without
recalibration of the base quality scores. We found the
algorithm has higher accuracy with the base quality score
recalibration (fig. 5B).

Random Initial Estimates to Avoid Local Maxima

We investigated the possibility that the EM algorithm
could converge to nonglobal local maxima on the likelihood
surface. We simulated data sets (162 haplotypes, 100-bp
paired-end reads, 200� coverage, empirical error rates) over
a range of region sizes from 10 to 200 kb, starting from a
uniform initial estimate in addition to a varying number
of random initial estimates (0, 25, 50, and 100), with
100 replicates for each combination. We found that running
the algorithm multiple times with random initial estimates
did not improve performance (data not shown), indicating
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simulated pooled 100-bp paired-end sequence data from 162 haplo-
types at 200� coverage in a 200 kb region (550 replicates binned by
Shannon entropy in natural log units).
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that the EM algorithm finds the global maximum reliably
starting from a uniform initial estimate.

Estimation of Relative Abundances of Species Based
on 16S rRNA Sequence Reads

Although our primary motivation for developing this
method arises in the context of Drosophila evolution
experiments, the structure of our algorithm suggests it
may be extended to the problem of inferring bacterial
community composition. For instance, sequence reads
derived from 16S rRNA are often used to identify the species
contained within a naturally pooled sample. In the context
of our method for haplotype frequency estimation, each
species with a canonical 16S sequence is a known haplotype,
and the challenge is to infer the haplotype frequencies
based on reads copied with error from the canonical
sequences. As such, our method differs from most existing
16S analysis pipelines in that we do not first classify reads
to species and then infer frequencies. As in the haplotype
frequency inference problem, we consider the probability of
each read coming from each potential source species and
then iteratively converge on a set of frequency estimates
using the EM algorithm.

As a preliminary test of this approach, we simulated simple
communities composed of pools of 200 randomly chosen
species (average 16S sequence divergence 19% [±2 SD of
12%]), with 75-bp single-end sequence reads derived from
their 16S sequences, at varying coverage levels. The simulated
data reflect what one would expect from a shotgun sequenc-
ing metagenomics experiment, with sequence reads coming
from random locations in the 16S sequence, from the

different species according to their relative abundance
within the pool. (We do not consider the accuracy for
approaches that target a specific hypervariable region,
though the algorithm can be applied to such designs.)
Figure 6 shows the performance as a function of coverage.
As one example, with 150� pooled coverage of the 16S
sequence, the average sum of squared errors was
�2�10�4, which corresponds to an average error of 0.1%.
This error is of the same order of magnitude as the error
in estimation of Drosophila strain-level frequencies, which
used much larger regions, but typically have lower levels
of between-haplotype divergence. In these examples,
we assumed the species in the pool are known. We next
considered inference settings with unknown species in the
pool.

Frequency Estimation for a Specified Set of Species
within a Larger Mixture of Unknown Species

First, because the species of some genera are better charac-
terized than others, we investigated the utility of this method
in estimating the frequencies of known species within a single
genus, in a pool containing a large number of unknown spe-
cies from different genera. To this end, we simulated pools
containing 500 randomly chosen species: 20 from genus
Clostridium, together with 480 species from other genera. In
these simulations, the pool of known sequence reads was
spiked with unknown sequence reads, with the total
unknown proportion ranging from 0% to 50%, and where
the unknown sequence reads were drawn uniformly at
random from the 480 unknown species. The 16S average
sequence divergence between pairs of known species was
12% (	10%), whereas the average divergence between
known and unknown species was 20% (	6%).

We then estimated the frequencies of the Clostridium
species using only the known reference sequences. We
found that the EM algorithm, in combination with the
haplotype likelihood filter (see New Approaches), performed
well (sum of squared errors �2� 10�4, average error
�0:3%), in spite of the large number of unknown species
in the pool (fig. 7).

Effects of Unrelated Unknown Species on Frequency
Estimation

To more fully characterize the effect of unknown species
on the estimation of frequencies of known species, we further
investigated the scenario where there are unknown species
present within the pool. For simplicity, we simulated
pools with 20 known species, spiked with a single unknown
species that does not belong to the same genus as any of
the known species.

In this situation, reads coming from the unrelated
unknown species do not map well to the reference sequences
of the known species. Because the unknown is unrelated
to the known species, these reads have low haplotype likeli-
hoods across all the known species (fig. 8A). The result is
that the frequency estimates are pushed toward a more
uniform distribution (fig. 8B), as the reads of the unknown
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FIG. 6. Performance of the EM algorithm on the calculation of
species-level abundances from 16S rRNA sequence data. The algorithm
was run on simulated 75-bp single-end 16S sequence data from pools of
200 randomly chosen microbial species, with 100 replicates for each
coverage level.
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species give weight to all the known species in roughly
equal portions. We found that this effect can be minimized
by implementing a haplotype likelihood filter (see New
Approaches), which effectively keeps only those reads that
come from the known species. Our simulations show that

a haplotype filter z-score threshold of �2 works well to
maintain good performance in the presence of unrelated
unknowns (fig. 8C). Without the haplotype filter, perfor-
mance of the EM algorithm degrades as the proportion of
the unknown species in the pool increases.

Effects of Related Unknown Species on Frequency
Estimation

We also investigated the scenario where there is a single un-
known species that is related to one of the known species in
the pool. Again for simplicity, we simulated pools with 20
known species, spiked with an unknown species from the
same genus as one of the known species.

We found that, in general, the sequence reads coming
from the unknown species increase the estimated frequency
of the known species that it is related to. However, this effect
depends on the sequence similarity between the unknown
and the related known species. Reads that come from a
region where the two species differ significantly are filtered
out and do not contribute to the estimation.

This effect is limited to the estimate of the frequency of the
known species that is related to the unknown and has little
effect on the relative frequency estimates of the other species
(fig. 9A and B).

Discussion
We have presented a new method for estimating the fre-
quencies of known haplotypes from pooled sequence data,
using the haplotype information contained in individual
sequence reads.

We showed that the method outperforms methods based
on allele frequencies, as well as simple methods using
sequence data. Using data from larger genomic regions
improves the accuracy of the estimate. Increased coverage
and longer read lengths also improve the performance
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FIG. 8. Sequence reads from unknown unrelated species push frequency estimates toward the uniform distribution; filtering the reads based on
haplotype likelihood minimizes this effect. (A) Sequence reads from unknown unrelated species have low maximum haplotype likelihoods, giving rise to
the long left tail of the distribution. By calculating the theoretical distribution (blue) of maximum haplotype likelihoods based on the base quality scores
from the sequence data, reads whose maximum haplotype likelihood falls below a specified threshold (red, z-score threshold =�2 in this example) can
be filtered out. (B) A typical example of this effect, with 50% of the reads coming from the unknown species. (C) Without filtering on the haplotype
likelihoods, error in frequency estimates increases with higher proportion of unknown sequence reads. Seventy-five-base-pair single-end 16S sequence
reads were simulated from 20 species, with varying proportions of reads from an unknown unrelated species (100� pooled coverage, 100 replicates
per unknown proportion level).
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FIG. 7. Large numbers of unknown unrelated species do not signifi-
cantly affect the estimate of within-genus species frequencies. The EM
algorithm with haplotype likelihood filter was run on simulated 75-bp
single-end 16S sequence reads from 500 species (20 Clostridium species
[known] and 480 non-Clostridium species [unknown]). “Unknown pro-
portion” is the total proportion of reads coming uniformly at random
from the 480 unknown species, with the remainder of the reads coming
from the 20 known species (100� pooled coverage, 100 replicates for
each unknown proportion level).
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of the algorithm. The method generally performs better for
haplotype frequency distributions with lower entropy
(nonuniform) than those with higher entropy (uniform),
which is particularly notable in metagenomics contexts,
where species/strain abundances are far from uniform. The
method incorporates uncertainty in the sequence reads by
using the reported base quality scores. Recalibration of base
quality scores using monomorphic sites in the pooled data
leads to better performance.

We note that in the EM algorithm, as well as the two
simple approaches, haplotype information from individual
sequence reads is combined across a genomic region, which
minimizes the effects of local areas of low coverage. In con-
trast, single-site allele frequency estimates have larger variance
at sites with lower coverage, which decreases the accuracy of
methods based on these estimates.

The method relies on the probabilistic assignment of
sequence reads to the known haplotypes. The method
works best when the SNP density (the number of SNPs
per base pair) is high; ideally, individual read pairs will
cover multiple SNPs. In the DGRP Drosophila strains, the
SNP density is �1=20 SNP/bp, so that 100-bp paired-end
reads contain on average 10 SNPs per pair, which is sufficient
for this probabilistic assignment. As sequence read lengths
increase with advances in sequencing technology, we antici-
pate that this method will be useful for a wide variety
of organisms.

This method can be improved to handle more compli-
cated genomic situations. For example, the probability
model described could be enhanced with known information

about between-species or between-strain copy number vari-
ation. In addition, because estimation at the species level
(or above) requires mapping the reads to multiple references,
there is room for improvement in the efficiency of this step,
including methods for mapping reads to multiple references
simultaneously with automatic calculation of haplotype
likelihoods, which can then be input directly into the EM
iteration.

This method has immediate application in the analysis of
pooled data from artificial selection experiments where the
founding haplotypes are known. In essence, by using infor-
mation from the founding population, we are able to infer
haplotype information about the final pooled population,
which has previously only been available when individuals
have been sequenced separately. This haplotype information
can then be used for various purposes (e.g., to look for signa-
tures of selection).

It should be noted that in the experimental evolution
setting, the haplotype frequency estimates obtained are
local and will vary across the genome due to recombination
over the course of the experiment. In the case where a
recombination has occurred within the region under con-
sideration, nearly all sequence reads coming from the
recombined haplotype will come from one or the other of
the two original haplotypes. Because of this, reads from the
recombined haplotype will contribute to the frequency
estimates of both of the original haplotypes, with the
exact proportion determined by the location of the recom-
bination point within the region. The few reads that span a
recombination point will have very low haplotype likeli-
hoods and will contribute negligibly to the final estimate.
In practice, one can choose the width of the genomic region
used for the estimation to be smaller than the expected
length scale of recombination. For example, in Drosophila
selection experiments lasting 25 generations, we expect to
see recombination breakpoints at a scale of �1mb, whereas
our method obtains very accurate results with much smaller
regions of �100kb.

Haplotype frequency estimation from pools may also be
useful in quantitative trait loci (QTL) mapping studies. In
studies with recombinant inbred lines, several generations
of inbreeding are carried out with lines that are derived
from mixed populations founded by multiple strains, and
the parent of origin for each segment in each inbred line is
inferred and correlated with phenotypic trait values. As an
alternative, it may be possible to perform haplotype fre-
quency estimation from pooled sequencing of the mixed
populations directly and map traits by correlating haplo-
type frequencies with trait values.

In addition to applications in experimental evolution set-
tings with known founder haplotypes, we also explored
whether the method may have utility for estimating the
relative abundances of known species from metagenomic
data. We specifically tested the setting in which one has
short-read shotgun sequencing data from 16S rRNA, rather
than amplicon-based 16S rRNA sequences. The setting
we have tested is relevant to the practical setting in which
one generates whole-genome metagenomic data and then
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FIG. 9. When the pool contains an unknown species that is related to
one of the known species, sequence reads from the unknown increase
the frequency estimate of the most closely related known species
but have little effect on the estimation of the relative frequencies of
the other known species. (A) Sequence reads from an unknown spe-
cies (black) related to one of the known species (orange) contribute
to the frequency estimate of that species. Shown is a typical example of
this effect, with 50% of the reads coming from the unknown species.
The relative abundances of the other known species are estimated
accurately. (B) Presence of the unknown species has little effect on
the estimation of the relative frequencies of the other (unrelated)
known species. Seventy-five-base-pair single-end 16S sequence reads
were simulated from 20 known species and 1 unknown related species
(100� pooled coverage, 100 replicates for each unknown proportion
level).
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focuses on reads from 16S rRNA for quantification of known
species. In our simulation experiments, we have explored
various factors affecting performance. We note how having
closely related species in the sample that are not in the ref-
erence set will elicit an implicit “clustering” behavior, in which
the most closely related known species in the reference set
will have its frequency inflated (fig. 9A). The relative frequen-
cies of unrelated species are not affected, however (fig. 9B).
This behavior extends nicely to the case where one is inter-
ested in the relative frequencies of species from a well-
characterized genus (e.g., one in which most member species
have known canonical 16S rRNA sequences). In this case,
we show that the relative frequencies can be estimated
well, even in the presence of hundreds of background spe-
cies (fig. 7). In these cases, our haplotype likelihood filter
acts as a form of clustering tool in that we only base the
frequency estimates on reads that are close to the taxa of
interest.

Just as SNP density is highly relevant in the haplotype
inference problem, a key factor in the performance for
metagenomic applications is the amount of 16S sequence
divergence between the taxa of interest. Our examples
were based on species sets whose divergences were gen-
erally between 5% and 33% and the method performed
well in these settings. More closely related species will be
more difficult to distinguish, and at an extreme, strains
within species will require more than the 16S sequence to
distinguish. One limitation is that our method infers fre-
quencies of taxa represented by specific canonical rRNA
sequences. How our method would perform with a single
canonical sequence per genus, class, or phylum is not
clear, and future extensions of this work may seek to
specifically alter the underlying probability model to in-
clude diversity within taxa to specifically address this
problem.

The potential advantage over existing methods for
handling 16S data lies in the method’s ability to handle
base quality scores explicitly and give probabilistic
weights to the source of reads, rather than making hard
classifications and estimating frequencies based on those
classifications. As we have shown in the context of haplo-
type frequency estimation (fig. 2), such estimation per-
forms much worse than the probabilistic approach we
take here.

The software implementing the method, harp, is open
source and available for download and can be easily inte-
grated into existing analysis pipelines.

Materials and Methods

Implementation

We implemented both simple approaches and the EM
algorithm described earlier in a C++ program called
harp (“Haplotype Analysis of Reads in Pools”). The pro-
gram takes as input a standard BAM file with mapped
sequence reads, a reference sequence in FASTA format,
and known haplotypes in the SNP data format used by
the DGRP project (Mackay et al. 2012). Alternatively, to

estimate abundances of distinct species within a pool, the
program will accept multiple BAM files, each paired with
the reference sequence used for the read mapping. The
software uses the samtools API for random access to
BAM files (Li et al. 2009). The program includes many
options for the user to customize the analysis, including
choice of algorithm, the genomic region to analyze, pa-
rameters for sliding windows within the region, conver-
gence threshold for the EM algorithm, parameters used to
generate multiple random initial estimates to avoid local
maxima, base quality score recalibration, and haplotype
likelihood filtering threshold. The program also calculates
standard errors for the haplotype frequency estimates,
using general properties of the EM algorithm and maxi-
mum likelihood estimators (details on this calculation
below).

Performance Evaluation

We used the following procedure to simulate pooled
sequence data:

� Draw a random haplotype frequency distribution
(the “true” distribution) from a symmetric Dirichlet distri-
bution. The symmetric Dirichlet distribution is parameter-
ized with a single parameter � that governs the uniformity
of the randomly drawn frequency distributions: � ¼ 1
gives an identical probability to each possible frequency
distribution, � > 1 generates frequency distributions that
are close to uniform (i.e., all haplotypes at similar frequen-
cies), and � < 1 generates frequency distributions that
are more nonuniform (i.e., a few common haplotypes,
and many rare ones). The parameter value � ¼ 0:2 was
chosen to produce frequency distributions with nonuni-
formity similar to that observed in our experimental
Drosophila data.
� Draw random sequence reads by choosing the haplotype

according to the true distribution and the starting position
uniformly at random over the given genomic region.
For paired-end reads, the paired-end distance was
chosen according to a Poisson distribution fitting the
experimental Drosophila data.
� For segregating sites denoted by ambiguous base codes,

draw allele frequencies according to a symmetric Dirichlet
distribution. Choose the true base at a segregating site
according to the allele frequencies. (For biallelic sites
denoted by a 2-base ambiguous code, e.g., R for A or G,
we set the Dirichlet parameter � ¼ 1, i.e., the allele fre-
quency was chosen uniformly at random. For sites denoted
by N (any) in the haplotype, we set � ¼ 0:1, as we expect
that most of these sites have an allele that is at or near
fixation.)
� Generate base quality scores according to the empirical

distribution obtained from the real data (either
Drosophila or 16S) and introduce sequencing errors with
error rates determined by the base quality scores.

For the simulated Drosophila pooled sequence data,
we generated mapped read files (SAM format), which were
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subsequently converted to binary format (BAM) using sam-
tools (Li et al. 2009). For the simulated 16S rRNA sequence
data, we generated raw read files (fastq format), which were
then mapped to reference sequences using bwa (Li and
Durbin 2010).

For our performance metric, we used the sum of squared
errors between the true haplotype frequencies of the
simulated data and the frequencies estimated by the EM
algorithm:

PH
h¼1 f true

h � f estimated
h

� �2
, in addition to the root

mean squared error. We define ftrue to be the realized fre-
quencies of the haplotypes in the sequenced reads from the
DNA pool. We do this to quantify the error of estimation,
rather than the stochasticity of the pooled sequencing.
For the purposes of comparison across simulations, we
report the sum of squared errors in the figures. However,
we also give the equivalent root mean squared errors in the
main text for interpretation.

Simulation of Drosophila Pooled Sequence Data

To evaluate the performance of the algorithms, we used
simulated pooled sequence data based on experimental
data from selection experiments in Drosophila melanogaster
(Turner and Miller 2012). The data consisted of Illumina
85-bp and 100-bp paired-end sequence reads generated
from four pools of 120 D. melanogaster individuals
each, sequenced at 200� average coverage. For our
known haplotypes, we used the publicly available SNP
data from 162 Drosophila inbred lines representing
Freeze 1 of the DGRP project. The published haplotypes
include ambiguous base codes (e.g., R for A or G) to
represent sites that have multiple alleles still segregating
within the inbred line. The ambiguous base code N is
used at sites where there was not enough sequence data
to make a base call.

Simulation of 16S rRNA Pooled Sequence Data

To evaluate the ability of the EM algorithm to estimate
species abundances from a pool of 16S rRNA sequences,
we used sequences from the Greengenes 2011 release of
its 16S rRNA sequence database (DeSantis et al. 2006),
which consists of approximately 800,000 sequences. We sim-
ulated 75-bp single-end sequence reads with an empirical
base quality score distribution based on the publicly avail-
able Illumina-sequenced “mock community” short read
archive data sets from the Human Microbiome Project
(NIH HMP Working Group 2009). Specific details on
number of species used in each simulated experiment are
described in the Results section.

Formal EM Calculation
Expectation Step
We calculate the expectation of the complete data log likeli-
hood, where the expectation is taken over the posterior dis-
tribution of the missing data given the observed data and
the current estimate. Recall that pj,h ¼ Pð�j ¼ h j rj,f

ðiÞÞ

is the probability that read rj came from haplotype h, given
our current haplotype frequency estimate f ðiÞ.

Qðf j f ðiÞÞ ¼ E� j r,f ðiÞ ½log Lðf j �,rÞ�

¼ E� j r,f ðiÞ
X

j

logPð�j,rj j f Þ

¼
X

j

E�j j rj,f ðiÞ log Pð�j,rj j f Þ

¼
X

j

X
h

Pð�j ¼ h j rj, f ðiÞÞ log Pðh,rj j f Þ

¼
X

j

X
h

pj,h½log Pðrj j hÞ+ log Pðh j f Þ�

¼
X

j

X
h

pj,h log fh + C

¼ log
Y

h

f

P
j
pj,h

h + C,

where C is a constant independent of f.

Maximization Step
Our next estimate f ði+1Þ is given by the f that maximizes the
expected log likelihood:

f ði+1Þ ¼ arg max
f

Qðf j f ðiÞÞ:

First note that the function Rðf Þ ¼
Q

h f�h

h is maximized
by fh ¼ �h=

P
i �i. (For example, the maximum likelihood

estimator for the parameters of a multinomial distribution
is given by the vector of count proportions.)

Because log is monotonic andX
h

X
j

pj,h ¼
X

j

1 ¼ Nðthe number of readsÞ,

Qðf j f ðiÞÞ is maximized when, for all h:

fh ¼

P
j pj,h

N
:

In other words, our next estimate f ði+1Þ is given by the
average of the posterior vectors:

f ði+1Þ ¼

P
j pj

N
:

Calculation of Standard Errors

We use general properties of the EM algorithm and maxi-
mum likelihood estimators to calculate standard errors for
our haplotype frequency estimates, following Lange (2010).
For brevity, we let L(f) be the log likelihood of f. Our strategy
to calculate standard errors of our maximum likelihood
estimate f̂ is as follows:

1) Estimate the observed information I ¼ �d2Lðf̂ Þ.
2) f̂ is asymptotically normal with covariance matrix I�1,

so the standard error estimates are the square roots
of the diagonals of I�1.

One slight complication is that our estimate f̂ is subject to a
linear constraint (the frequencies must sum to 1). Below, we
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also show how to adjust this calculation to handle this
constraint.

Calculating d2L

Let g be the minorizing function for the EM algorithm:

gðf j f0Þ ¼ Qðf j f0Þ+ Lðf0Þ � Qðf0 j f0Þ:

Then g satisfies the relations for all f , f0:

gðf j f0Þ 
 Lðf Þ

gðf0 j f0Þ ¼ Lðf0Þ:

Note that rgðf j f0Þ ¼ rQðf j f0Þ. Also, Lðf Þ � gðf j f0Þ is
minimized f ¼ f0, so rLðf Þ � rgðf j f0Þ ¼ 0 at f ¼ f0. This
means that rLðf0Þ ¼ rQðf0 j f0Þ. Note that rQðf0 j f0Þ is
the gradient rQðf j f0Þ computed as a function of f, then
evaluated at f ¼ f0.

In summary, we can write the score function
S ¼ ðS1, . . . , SHÞ

0, defined to be the gradient of the log
likelihood, as:

Sðf Þ ¼ rLðf Þ ¼ rQðf j f Þ:

Because dS ¼ d2L, we need to find the partial derivatives
of S.

Recall that we have:

Qðf j f0Þ ¼
X

h

X
j

pj,h

 !
log fh,

where pj,h is the haplotype posterior vector, representing the
probability that read rj came from haplotype h.

Note that the pj,h depends on f0, but not f, so the partial
derivatives of Qðf j f0Þ have a simple form:

@Qðf j f0Þ

@fh
¼

P
j pj,hðf0Þ

fh
:

Now we evaluate at f¼ f0 and drop the subscript:

Shðf Þ ¼

P
j pj,hðf Þ

fh
:

We can now compute partial derivatives of the score function:

@Sh

@fk
¼

1

fh

X
j

@pj,h

@fk
�

1k¼h

f 2
h

X
j

pj,h:

To compute the partial derivatives of pj,h, first write pj,h as:

pj,h ¼
lj,hfh

Pj
,

where Pj ¼
P

h lj,hfh is the total probability of read rj. Because
@Pj=@fk ¼ lj,k, we have:

@pj,h

@fk
¼

lj,h
Pj

1k¼h � lj,hfh
1

P2
j

@Pj

@fk

¼
lj,h
Pj

1k¼h �
lj,hlj,kfh

P2
j

:

Adjusting for the Linear Constraint

We continue to follow Lange (2010) to handle the linear
constraint

P
h fh ¼ 1. Let V ¼ 1t

H ¼ ð11 � � � 1Þ be the row
vector with H 1’s, so we can write our constraint as Vf ¼ 1.

We let W be a matrix with H� 1 column vectors orthog-
onal to V:

W ¼

1 1 � � � 1
�1 0 � � � 0
0 �1 � � � 0
..
. ..

. ..
. ..

.

0 0 � � � �1

0
BBBB@

1
CCCCA

We reparametrize by �, using the relation f ¼ �+ W�,
where � satisfies the constraint V� ¼ 1. As a function of
�, the log-likelihood Lð�+ W�Þ has observed information
�Wtd2Lð�+ W�ÞW, which gives an estimate Varð�̂Þ ¼
�½Wtd2Lðf̂ ÞW��1. This gives the estimate Varðf̂ Þ ¼
VarðW�̂Þ ¼ �W½Wt d2Lðf̂ ÞW��1Wt, where d2Lðf̂ Þ was
estimated above.

Haplotype Likelihood Filter Threshold

In this section, we show how we approximate the mean and
variance of the maximum haplotype likelihood distribution,
which are used to calculate the threshold for the haplotype
likelihood filter.

The main idea is that the maximum haplotype likelihood
Pðr j �,qÞ for a read is usually attained by the actual haplotype
from which the read was copied. Because of this, we can
approximate the mean and variance of the maximum
haplotype likelihood distribution by the mean and variance
of the distribution of Pðr j � ¼ h,qÞ for reads r copied from a
fixed haplotype h, under the empirical distribution of the base
quality scores q. For ease of calculation and implementation,
we actually calculate the statistics for the log-likelihood
distribution log Pðr j � ¼ h,qÞ. We also suppress the depen-
dence on h in the following for ease of notation.

We assume we have an empirical per-position base quality
score distribution obtained from the data, where for simplic-
ity we assume that the base quality scores at different posi-
tions are independent of each other. So for reads of length L,
we have discrete random variables ðQ1, . . . , QLÞ. For example,
for Illumina reads, Qi will take values in f0, . . . , 40g. For a base
quality score q, we let "ðqÞ denote the probability of a read
error for that base. Typically we will have the Phred-encoded
error probabilities, so "ðqÞ ¼ 10�q=10.

Let ðh1, . . . , hLÞ denote the true haplotype sequence from
which the read is copied, ðq1, . . . , qLÞ denote the base quality
scores, and ðr1, . . . , rLÞ denote the read bases. Note the slight
change in notation from the description of the probability
model (see New Approaches): Here, the subscript denotes
position in the sequence read.

By our assumption of position independence, we have
log Pðr j qÞ ¼

PL
i¼1 logPðri j qiÞ. Note that each of these

terms is random:

log Pðri j qiÞ ¼
logð1� "ðqiÞÞ w=probability 1� "ðqiÞ

logð"ðqiÞ=3Þ w=probability "ðqiÞ

�
,
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where the first event corresponds to ri ¼ hi (no error), and
the second event represents the three possible error bases
when ri 6¼ hi, each one occurring with probability "ðqiÞ=3.

Next we calculate the conditional expectation of
log Pðri j qiÞ given qi:

E½log Pðri j qiÞ j qi� ¼ ½1� "ðqiÞ� logð1� "ðqiÞÞ +

"ðqiÞ logð"ðqiÞ=3Þ:

Note that this expression does not depend on ri. Now we can
take the expectation over Qi:

E½log Pðri j qiÞ� ¼ EE½log Pðri j qiÞ j qi�

¼
X

qi

E½log Pðri j qiÞ j qi�PðQi ¼ qiÞ:

Note that this expression does not depend on either ri or
qi and is a function solely of the empirical distribution Qi.
Finally, we can sum over positions to obtain:

E½log Pðr j qÞ� ¼
XL

i¼1

E½log Pðri j qiÞ�,

which represents the expected log haplotype likelihood for
a read r corresponding to the true haplotype h, under the
empirical base quality distribution.

Similarly, we calculate E½ðlog Pðri j qiÞÞ
2
� for each position,

from which we can obtain the per-position variance
Var½log Pðri j qiÞ�. Again by our position-independence
assumption, we have:

Var½log Pðr j qÞ� ¼
XL

i¼1

Var½log Pðri j qiÞ�:

We use the calculated mean and variance of log Pðr j qÞ
to translate a user-defined z-score threshold into a haplo-
type log-likelihood threshold for filtering out low-likelihood
reads.
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