
forqs Supplementary Information

Forward-in-time Simulation of Recombination,

Quantitative Traits, and Selection

Darren Kessner and John Novembre

November 20, 2013

forqs is a forward-in-time simulation of recombination, quantitative traits,
and selection. The forqs simulator was designed to investigate haplotype pat-
terns resulting from scenarios where substantial evolutionary change has taken
place in a small number of generations due to recombination and/or selection
on polygenic quantitative traits. To do this, forqs tracks individual haplotype
chunks during the course of the simulation; each chunk carries an identifier
specifying the ancestral individual from which the block is derived. forqs is
implemented as a command-line C++ program, using a modular design that
gives the user great flexibility in creating custom simulations.

forqs is freely available with a permissive BSD license. Binary executables
can be obtained for Linux, OSX, and Windows from:
https://bitbucket.org/dkessner/forqs/downloads

1

https://bitbucket.org/dkessner/forqs/downloads

About the image

The image on the first page was created based on haplotype frequency infor-
mation reported during a forqs simulation. The image shows local haplotype
frequencies (equivalently, local ancestry proportions) along a single chromosome.
A single population was simulated with selection at two loci (one near each end
of the chromosome). 25% of individuals (blue) in the initial generation carried
the selected allele at the first locus, and a different 25% (green) carried the se-
lected allele at the second locus. After 100 generations, the two selected variants
have fixed in the population. All individuals carry one of the blue haplotypes
in the region containing the first locus, as well as one of the green haplotypes
in the region containing the second locus.

Contents

1 Getting Started 4

2 Design Overview 5

3 Tutorial Introduction 7
3.0 A minimal example . 7
3.1 Recombination and reporting output 8
3.2 Wright-Fisher simulation . 9
3.3 Selection . 10
3.4 Trajectories . 12
3.5 Quantitative traits . 14
3.6 Reporting haplotype frequencies 16

4 Modules 19
4.1 Module types and interfaces . 19
4.2 Module specification and instantiation 19
4.3 Top-level module: SimulatorConfig 20

4.3.1 Global simulation parameters 20
4.3.2 References to primary modules 21

4.4 Primary modules . 22
4.4.1 PopulationConfigGenerator 22
4.4.2 RecombinationPositionGenerator 23
4.4.3 MutationGenerator . 23
4.4.4 VariantIndicator . 24
4.4.5 QuantitativeTrait . 24
4.4.6 FitnessFunction . 24
4.4.7 Reporter . 24

4.5 Building block modules . 25
4.5.1 Locus and LocusList . 25
4.5.2 Trajectory . 25
4.5.3 Distribution . 26

2

5 Simulating background variation 27
5.1 Example 1: No new mutations 27
5.2 Example 2: Including new mutations 28

6 Validation 29
6.1 Single locus selection . 29
6.2 Decay of linkage disequilibrium 29
6.3 Mutation-drift equilibrium . 30
6.4 Response to selection . 31
6.5 Performance . 32

7 Software development 34
7.1 Building the program . 34
7.2 Structure of the codebase . 34
7.3 Software architecture . 34

7.3.1 Low-level data structures 35
7.3.2 Configurable modules . 35
7.3.3 Mutation handling . 36

7.4 Appendix: Boost libraries . 37
7.5 Appendix: Cross-compilation targeting Windows 37

3

1 Getting Started

forqs binaries (Linux, OSX, and Windows) are distributed in zip file pack-
ages containing the executables, documentation, and example configuration files.
The latest forqs packages are available here:

https://bitbucket.org/dkessner/forqs/downloads

forqs is a command line program that takes a single argument specifying
the configuration file for the simulation:

forqs config_file

The forqs packages include an examples directory containing several exam-
ple configuration files. After unzipping the forqs package, you can run forqs
directly from the package directory:

bin/forqs examples/example_1_locus_selection.txt

forqs puts all output files in the output directory specified in the configura-
tion file. After running this command, you will find a new directory output_

example_1_locus_selection with the output from this simulation. For conve-
nience, you can put the forqs executable somewhere in your PATH, e.g. ~/bin,
so that you don’t have to type the path when running the program.

In addition to the document you are now reading, forqs packages include
the forqs Module Reference (docs/forqs_module_reference.html) which con-
tains details about the configurable modules available to the user, including
parameter names, usage, and links to examples.

4

https://bitbucket.org/dkessner/forqs/downloads

2 Design Overview

crossover at
position 1234

(0, 1) (0, 2)

(0, 1)

(1234, 2)

crossover at
position 5678

(5678, 1)

Haplotype Chunk: (position, id)

Chromosome: array of haplotype chunks

Figure 1: forqs chromosome representation. An individual chromosome is
represented by a list of haplotype chunks. Each haplotype chunk is represented
by two numbers (position, id): the position where it begins, and the identifier
of the founding haplotype from which it is derived. This cartoon depicts a
chromosome with 3 haplotype chunks as the result of recombination (double
crossover) between two founder chromosomes.

forqs begins with a set of founding haplotypes representing the individuals
in the initial generation. By assigning a unique identifier to each founding haplo-
type, individual haplotype chunks are tracked as they recombine over subsequent
generations. For the purposes of simulation, any existing neutral variation on
the haplotype chunks can be ignored. When simulating selection on standing
variation, only those loci with fitness effects need to be tracked.

Internally, forqs represents an individual chromosome as a list of haplotype
chunks (Figure 1). Individuals are diploid, and carry a user-specified number
of chromosome pairs. To represent genetic variation at particular loci, forqs
queries functions called VariantIndicators to obtain the variant values carried
by the founding haplotypes at those loci.

forqs uses configurable modules (Section 4) that are plugged into the main
simulator to change the behavior of the simulation (Figure 2). forqs performs
the following actions during a single cycle of the simulation:

(1-3) Generation of new populations: The PopulationConfigGenerator mod-
ule (1) provides the simulator with a population configuration that spec-
ifies how to create individuals in the next generation from parents in
the previous generation, based on user-specified population size and mi-
gration rate trajectories. Recombination and mutation are handled by
a user-specified RecombinationPositionGenerator module (2) and/or
MutationGenerator module (3), respectively.

(4) Genotyping: individuals are “genotyped” at a set of loci, using the
VariantIndicator module to obtain variant (SNP) values for each in-
dividual. The list of loci to genotype is determined from the quantitative
traits and reporters that are specified by the user.

(5) Quantitative trait evaluation: for each quantitative trait, a trait value is
calculated for each individual, based on the individual’s genotype at loci

5

 Population Config (1)

populations,
fitnesses

fitnesses

trait values genotypes

populations

Variant
Indicator

(4)

Quantitative
Traits

(5)

Fitness
Function

(6)

Reporters
(7)

Recombination (2)

Mutation (3)

Figure 2: forqs modular design. The orange boxes represent places where
the user can plug in configurable modules.

affecting the trait. Each quantitative trait is specified by a Quantitative-

Trait module.

(6) Fitness evaluation: the FitnessFunction module calculates each individ-
ual’s fitness based on the individual’s quantitative trait values.

(7) Reporting: each Reporter module updates its output files using current
information from the populations (which includes genotypes, trait values,
and fitnesses).

Each configurable module in Figure 2 is actually an interface with multiple
implementations. The user specifies which module implementations to instanti-
ate in a forqs configuration file. More details on the primary module interfaces
and their interaction with the simulator can be found in Section 4.4. The forqs

Module Reference contains detailed information on the primary module imple-
mentations available to the user.

In addition to the primary modules shown in the diagram, there are several
building block modules (Section 4.5) that provide basic functionality to the
primary modules. For example, Trajectory modules provide a unified method
for specifying values that change over time, such as population sizes or migration
rates. Similarly, Distribution modules can be used to specify how to draw
particular random values, for example, QTL positions or allele frequencies.

6

3 Tutorial Introduction

In this section we introduce forqs configuration files, starting with a minimal
example and gradually adding modules to add complexity to the simulation.
All example configuration files can be found in the examples directory of the
forqs package.

3.0 A minimal example

We start with a minimal example configuration file:

#

tutorial_0_minimal.txt

#

PopulationConfigGenerator_ConstantSize pcg

population_size = 10

generation_count = 3

SimulatorConfig

output_directory = output_tutorial_0_minimal

population_config_generator = pcg

There are two modules specified in this configuration file. The first module is
PopulationConfigGenerator ConstantSize, which we have assigned the ob-
ject id pcg. The object id, which can be any text string, allows other objects to
reference this object. We have set two parameters for this module, which specify
the population size (population size = 10) and the number of generations to
simulate (generation count = 3).

The second module is SimulatorConfig, the top-level module. This module
must be specified last in the configuration file, because it has references to the
primary modules (the general rule is: objects must be specified before they can
be referenced by other objects). In this case, we are telling SimulatorConfig to
use object pcg as our PopulationConfigGenerator, which is the only primary
module that is required to be specified. The other primary modules have trivial
defaults, and we leave them unspecified. In addition to the primary module
references, SimulatorConfig also contains global simulation parameters. In this
case, we have specified the output directory to be output_tutorial_0_minimal.

The simulator queries the PopulationConfigGenerator each generation to
obtain a population configuration, which contains the information necessary to
create the next generation from the previous one. In this case, the population
configuration is the same each generation — it tells the simulator to create a
population of 10 individuals with parents drawn from the same population in
the previous generation.

When you run forqs on this example (tutorial_0_minimal.txt), you will
see screen output showing that the simulation ran for 3 generations. You will
also see the new output directory output_tutorial_0_minimal. If you look in
this directory, you’ll see a single file: forqs.simconfig.txt. This file contains

7

the configuration used for the simulation, including unspecified default param-
eters. However, there are no other output files in the directory, so we don’t
actually know what happened during the simulation. To get more information,
we need to specify Reporters to report output — we show how to do this in the
next section.

3.1 Recombination and reporting output

In this example, we add modules to include recombination and report output:

#

tutorial_1_recombination_reporter.txt

#

PopulationConfigGenerator_ConstantSize pcg

generation_count = 3

population_count = 1

population_size = 10

chromosome_lengths = 1e6

RecombinationPositionGenerator_Uniform rpg

rate = 1

Reporter_Population reporter_population

update_step = 1

SimulatorConfig

output_directory = output_tutorial_1_recombination_reporter

population_config_generator = pcg

recombination_position_generator = rpg

reporter = reporter_population

When creating offspring chromosomes from parental chromosomes, the
simulator uses the RecombinationPositionGenerator module to gener-
ate lists of recombination positions. In this case, we are using
RecombinationPositionGenerator Uniform, which chooses the positions uni-
formly at random along the chromosome. Note the use of the compound param-
eter chromosome length rate that specifies both the length of the chromosome
and the recombination rate.

Reporter modules are used by forqs to output information about the sim-
ulation. The user can specify an arbitrary number of Reporters, depending on
what output is desired. Reporter Population outputs forqs population files,
where each individual is represented as a list of chromosomes (one chromosome
per line) and each chromosome is represented as a list of haplotype chunks. By
default, population files will be produced only for the final generation — set-
ting update step = n will tell the Reporter Population to output population
files every n generations. You can see this by uncommenting (removing the
’#’ character) the update step line in the configuration file and re-running the
simulation.

8

The population files contain the raw information about the simulated indi-
viduals, and are not meant to be analyzed directly. Instead, they can be used to
propagate existing neutral variation from the founding haplotypes of the initial
generation to the mosaic haplotypes of the final generation (see Section 5).

However, we will use the population files to illustrate forqs’ internal rep-
resentation of chromosomes. The first chromosome in the population file from
the final generation is:

+ { (0,12) (704958,7) }

This means that the first chromosome of the first individual is made up of two
haplotype chunks: the first chunk (0,12) starts at position 0 and comes from
founder individual 12; the second chunk (704958,7) starts at position 704958
and comes from founder individual 7. Now comment out the following line in
SimulatorConfig:

recombination_position_generator = rpg

which ’un-plugs’ the RecombinationPositionGenerator from the simulator.
Now re-run the simulation, specifying a different output directory on the com-
mand line:

forqs tutorial_1_recombination_reporter.txt output_directory=out2

When you look at the resulting final population file, you will see that all chro-
mosomes consist of a single chunk, as you would expect with no recombination.

3.2 Wright-Fisher simulation

Our next example is a simple Wright-Fisher simulation where we track the allele
frequency at a single locus under neutral drift:

#

tutorial_2_wright_fisher.txt

#

PopulationConfigGenerator_ConstantSize pcg

population_size = 100

generation_count = 200

population_count = 10

Locus my_locus

chromosome = 1

position = 100000

VariantIndicator_SingleLocusHardyWeinberg vi

locus = my_locus

allele_frequency = .5

Reporter_AlleleFrequencies reporter_allele_freqs

locus = my_locus

9

SimulatorConfig

output_directory = output_tutorial_2_wright_fisher

population_config_generator = pcg

variant_indicator = vi

reporter = reporter_allele_freqs

In this example, the population size is 100, the initial allele frequency is .5,
and the simulation runs for 200 generations.

The Locus module defines a single site — in this case it is position 100000
on chromosome 1. The Locus has id my locus, and this id is used by two other
modules to refer to this locus.

As we saw in the previous example, forqs represents chromosomes as lists
of haplotype chunks, with no information about nucleotides or variant (SNP)
values at any position. (To be concrete, we think of a variant value as being
0 or 1, but forqs variant values can be anything in the range 0–255, so we
are not restricted to bi-allelic SNPs). However, if we give forqs the variant
values for the founding haplotypes, it can calculate variant values for any mosaic
chromosome. This information is represented by a VariantIndicator, which is
a function that tells forqs which founding chromosomes contain which variants.

In our case, we specify a VariantIndicator SingleLocusHardyWeinberg,
which assigns variants to individuals in Hardy-Weinberg proportions. Because
we have specified an initial allele frequency of .5, this means that of the founding
individuals, 25% will be homozygote 0, 25% will be homozygote 1, and 50% will
be heterozygotes.

We also want to track the allele frequency at this locus, so we specify
a Reporter AlleleFrequencies, which reports the allele frequency at each
generation. You will find the output in the file allele_frequencies_chr1_

pos100000.txt.
You may have noticed the commented line with the parameter

population count = 10. By uncommenting this line, you will tell forqs to
simulate 10 populations. PopulationConfigGenerator ConstantSize does not
allow migration between populations, so this effectively gives 10 independent
Wright-Fisher simulations. The resulting allele frequency trajectories can all be
found in the same output file, with one column per population. As expected, you
will see that the alternate allele (1) has been fixed or lost in some populations,
and is still polymorphic in others.

3.3 Selection

In this example, we add selection to our Wright-Fisher simulation.

#

tutorial_3_selection.txt

#

PopulationConfigGenerator_ConstantSize pcg

10

population_size = 100

generation_count = 100

population_count = 10

Locus my_locus

chromosome = 1

position = 100000

VariantIndicator_SingleLocusHardyWeinberg vi

locus = my_locus

allele_frequency = .5

QuantitativeTrait_SingleLocusFitness qt

locus = my_locus

w0 = 1

w1 = 1.1

w2 = 1.2

FitnessFunction_Identity ff

quantitative_trait = qt

Reporter_AlleleFrequencies reporter_allele_freqs

locus = my_locus

Reporter_MeanFitnesses reporter_mean_fitnesses

Reporter_DeterministicTrajectories reporter_deterministic_trajectories

initial_allele_frequency = .5

w0 = 1

w1 = 1.1

w2 = 1.2

SimulatorConfig

output_directory = output_tutorial_3_selection

population_config_generator = pcg

variant_indicator = vi

quantitative_trait = qt

fitness_function = ff

reporter = reporter_allele_freqs

reporter = reporter_mean_fitnesses

reporter = reporter_deterministic_trajectories

For this simulation, we add a quantitative trait that is determined by the
genotype at a single locus. In fact, in our case, the quantitative trait is fitness
(QuantitativeTrait SingleLocusFitness), and we use the identity function
for our fitness function (FitnessFunction Identity). The parameters w0,

w1, w2 are used to specify the fitness for individuals with genotype 0, 1, and
2, respectively. In general, a quantitative trait can depend on multiple loci on
multiple chromosomes, and fitness can depend on multiple quantitative traits.

11

We also add some useful Reporters that output the mean fitnesses of the
populations as well as the deterministic trajectories expected in the limit of
infinite population size. These output files can be easily read into a plotting
application (e.g. R) to compare the random trajectories with the deterministic
trajectories (Figure 3).

0.5

0.6

0.7

0.8

0.9

1.0

0 25 50 75 100
Generation

A
lle

le
 F

re
qu

en
cy

Figure 3: Allele frequency trajectories from selection simulation.

3.4 Trajectories

This section shows how to use Trajectory modules to specify population sizes
that change over time. In general, Trajectory modules can be used to specify
any numeric value that varies by population and generation – other examples
include mutation rates and migration rates.

In the first example (tutorial_4a_trajectories.txt), there are two pop-
ulations following the same population size trajectory: constant size 100
until generation 2, followed by a linear increase in population size until
it reaches 400 at generation 5, after which the population size stays at
400. This is accomplished by specifying each piece (Trajectory Constant,
Trajectory Linear, Trajectory Constant) and composing the pieces together
with Trajectory GenerationComposite.

#

tutorial_4a_trajectories.txt

#

12

Trajectory_Constant popsize_1

value = 100

Trajectory_Linear popsize_2

begin:value = 2 100

end:value = 5 400

Trajectory_Constant popsize_3

value = 400

Trajectory_GenerationComposite popsize

generation:trajectory = 0 popsize_1

generation:trajectory = 2 popsize_2

generation:trajectory = 5 popsize_3

PopulationConfigGenerator_LinearSteppingStone pcg

generation_count = 8

population_count = 2

population_size = popsize

SimulatorConfig

output_directory = output_tutorial_4a_trajectories

write_popconfig = 1 # set this flag to write out the popconfig file

population_config_generator = pcg

Note that PopulationConfigGenerator LinearSteppingStone has a
population size parameter whose value must be the id of a Trajectory

module (rather than a numeric value). Also, unless otherwise specified, each
Trajectory gives the same numeric value for each population in a given gen-
eration. You can see the raw population configuration generated by including
the parameter write popconfig = 1, which tells forqs to write out the popu-
lation configs in a file forqs.popconfig.txt. After running this example, you
can examine forqs.popconfig.txt to see the population sizes.

In the next example (tutorial_4b_trajectories.txt), population 1 fol-
lows the same population size trajectory as in the first example, while popu-
lation 2 experiences exponential growth, doubling each generation (with initial
population size 1000). In order to specify this scenario, each population size
trajectory is specified separately (popsize pop1 and popsize pop2 in this ex-
ample), and the two are composed with Trajectory PopulationComposite.
When Trajectory PopulationComposite is queried for a value for a popula-
tion, it returns the value obtained from the appropriate sub-trajectory.

#

tutorial_4b_trajectories.txt

#

population 1

13

Trajectory_Constant popsize_pop1_1

value = 100

Trajectory_Linear popsize_pop1_2

begin:value = 2 100

end:value = 5 400

Trajectory_Constant popsize_pop1_3

value = 400

Trajectory_GenerationComposite popsize_pop1

generation:trajectory = 0 popsize_pop1_1

generation:trajectory = 2 popsize_pop1_2

generation:trajectory = 5 popsize_pop1_3

population 2

Trajectory_Exponential popsize_pop2

generation_begin = 0

value_begin = 1000

rate = 0.693147 # log(2); population size doubles each generation

composite trajectory

Trajectory_PopulationComposite popsize

trajectories = popsize_pop1 popsize_pop2

PopulationConfigGenerator_LinearSteppingStone pcg

generation_count = 8

population_count = 2

population_size = popsize

SimulatorConfig

output_directory = output_tutorial_4b_trajectories

write_popconfig = 1 # set this flag to write out the popconfig file

population_config_generator = pcg

3.5 Quantitative traits

In this section, we present an example of specifying a quantitative trait by
specifying quantitative trait loci (QTLs) and their effect sizes.

#

tutorial_5_qtl.txt

#

PopulationConfigGenerator_ConstantSize pcg

generation_count = 10

population_count = 1

14

population_size = 100

chromosome_pair_count = 3

chromosome_lengths = 1e6 1e6 1e6

Locus locus1

chromosome = 1

position = 1000

Locus locus2

chromosome = 2

position = 2000

Locus locus3

chromosome = 3

position = 3000

LocusList loci

loci = locus1 locus2 locus3

VariantIndicator_Random vi

locus_list:population:frequencies = loci * .5 .5 .5

QuantitativeTrait_IndependentLoci qt

qtl = locus1 0 .1 .2

qtl = locus2 0 .2 .4

qtl = locus3 0 .1 .2

environmental_variance = .05

FitnessFunction_TruncationSelection ff

quantitative_trait = qt

proportion_selected = .5

Reporter_AlleleFrequencies reporter_allele_frequencies

quantitative_trait = qt

Reporter_TraitValues reporter_trait_values

quantitative_trait = qt

write_full = 1

SimulatorConfig

output_directory = output_tutorial_5_qtl

population_config_generator = pcg

variant_indicator = vi

quantitative_trait = qt

fitness_function = ff

reporter = reporter_allele_frequencies

reporter = reporter_trait_values

write_vi = 1

15

In this example, we specify a single population (size 100) where individuals
have 3 chromosomes. We specify 3 loci, each on a different chromosome.

VariantIndicator Random is used to assign variants to the initial haplo-
types randomly, according to the specified allele frequencies – in this case, the
variant allele frequency is .5 for each locus. The ’*’ indicates that all pop-
ulations have the same allele frequencies – because there is only one popula-
tion, we could have used ’1’ in place of ’*’. The parameter write vi = 1 in
SimulatorConfig tells forqs to write the file forqs.vi.txt containing lists of
the initial haplotypes carrying the variant allele at each locus.

QuantitativeTrait IndependentLoci specifies a quantitative trait where
the effects of variants at different loci are independent of each other, i.e. there
are no epistatic effects. Each QTL is listed with its per-genotype effects – in
this case, individuals with genotype 0, 1, or 2 at locus1 will have 0, .1, or
.2 added to their trait value, respectively. Alternatively, QTL effect sizes and
dominance values can be chosen randomly according to specified distributions.
For an example of this, see example_qtl_random.txt which also demonstrates
the use of LocusList Random to pick the loci randomly as well.

In this example, FitnessFunction TruncationSelection assigns fit-
ness values of 1 to individuals in the upper half of the distribu-
tion, and 0 to individuals in the lower half (proportion selected = .5).
Reporter AlleleFrequencies uses the parameter quantitative trait = qt,
which tells it to report allele frequencies for all QTLs associated with the trait.
Reporter TraitValues reports mean trait values for the population each gen-
eration; the parameter write full = 1 tells it to also report individual trait
values for each generation.

3.6 Reporting haplotype frequencies

This example shows the use of Reporter HaplotypeFrequencies to report local
haplotype frequencies in the simulated populations.

In this example, there is a single locus that confers an additive fitness advan-
tage to the individuals carrying the selected variant. The VariantIndicator

specifies which haplotype ids actually carry the variant: in this case,
VariantIndicator IDRange assigns the value 1 to the first 1000 haplotype ids,
i.e. the first 500 individuals are homozygous for the selected variant.

Reporter HaplotypeFrequencies uses a HaplotypeGrouping module that
specifies how haplotype ids should be grouped. The grouping can be as fine-
grained as a single haplotype id per group, but for simplicity we have specified
just two groups: those individuals who carry the selected variant, and those
who don’t. Reporter HaplotypeFrequencies then reports local proportions of
the two groups in the population.

We have specified a relatively high recombination rate (3 crossovers per meio-
sis on average) and strong selection (.1 selection coefficient) in order to illustrate
the change in local haplotype frequencies in just a few generations. After run-
ning the example, the output file haplotype_frequencies_chr1_final_pop1.

txt shows that haplotypes carrying the selected variant have risen to high fre-

16

quency near the selected locus, but not as much in regions farther away, due
to recombination. The parameter update step = k will result in reporting of
local haplotype frequencies every k generations (default is to report only the
final generation).

#

tutorial_6_haplotype_frequencies.txt

#

PopulationConfigGenerator_ConstantSize pcg

generation_count = 20

population_count = 1

chromosome_pair_count = 1

chromosome_lengths = 1e6

population_size = 1000

RecombinationPositionGenerator_Uniform rpg

rate = 3

Locus selected_locus

chromosome = 1

position = 500000

VariantIndicator_IDRange vi

locus:start:count:step:value = selected_locus 0 1000 1 1

QuantitativeTrait_IndependentLoci qt

qtl = selected_locus 1 1.1 1.2

FitnessFunction_Identity ff

quantitative_trait = qt

Reporter_AlleleFrequencies reporter_allele_frequencies

quantitative_trait = qt

HaplotypeGrouping_Uniform hg

ids_per_group = 1000 # 2 groups of 500 individuals

Reporter_HaplotypeFrequencies reporter_haplotype_frequencies

haplotype_grouping = hg

chromosome_step = 1e5

#update_step = 1

SimulatorConfig

output_directory = output_tutorial_6_haplotype_frequencies

population_config_generator = pcg

recombination_position_generator = rpg

variant_indicator = vi

quantitative_trait = qt

fitness_function = ff

17

reporter = reporter_allele_frequencies

reporter = reporter_haplotype_frequencies

18

4 Modules

In this section, we give an overview of the forqs module interfaces. For in-
formation about specific forqs module implementations, including parameter
names, usage, and links to examples, please refer to the forqs Module Refer-
ence (forqs module reference.html).

4.1 Module types and interfaces

forqs has a single top-level module called SimulatorConfig. There are seven
primary modules, corresponding to the orange boxes Figure 2, which represent
the main places where forqs can be customized. There are also several building
block modules, which are used by the primary modules.

Multiple modules may share a common interface, as indicated by their
names. For example, Reporter Timer and Reporter AlleleFrequencies both
implement the Reporter interface. Modules with the same interface can be used
interchangeably by the simulator.

In addition, specific modules can be instantiated multiple times (with differ-
ent object ids and parameters) – for example, Reporter AlleleFrequencies

can be used to report allele frequencies at several different loci.
By mixing and matching different modules, the user has a great deal of

flexibility in creating customized simulation scenarios. In addition, forqs can
easily be extended with new functionality by adding new modules that imple-
ment existing module interfaces.

4.2 Module specification and instantiation

Each forqs module specified in the configuration file corresponds to an object
that is instantiated by the simulator before the simulation starts. The first
line of a module specification contains the module name and object id. Each
subsequent line specifies a parameter of the module, formatted as a name-value
pair: name = value. The value is read as a string, but may be interpreted as an
integer, floating point, string, or list, depending on the parameter. Each module
determines how its parameter values are interpreted, and interpretation errors
are reported to the user. In some modules, multiple parameter values may be
specified with the same name, in which case each value specified is appended to
a list. A blank line ends the specification for that module.

As an example, here is the specification of a Locus module, which represents
a single nucleotide position:

Locus my_locus

chromosome = 1

position = 500000

The first line specifies a Locus object with id my locus. The two parameters
specify which chromosome (1) and the position on the chromosome (500000).

19

After parsing this module specification, the simulator instantiates a Locus

object, and puts the object in a registry under the name my locus. Subse-
quently instantiated objects may need a reference to this object, which can be
obtained by looking up the object by name in the registry. Because modules
are instantiated in the order they are specified in the configuration file, it is im-
portant to specify an object before it is referenced by other objects (otherwise
forqs will produce an error message that it couldn’t find the referenced object
in the registry).

Object references are specified as string-valued parameters, where the value
contains the object id of the referenced object. For example, the following is
the specification of a Reporter module that holds a reference to our example
Locus object my locus:

Reporter_AlleleFrequencies reporter_allele_frequencies

locus = my_locus

One final note on a parameter naming convention used in forqs – for param-
eters where the value is a list of sub-parameters, the parameter name should be a
concatenation of the sub-parameters. This convention allows easier reading and
editing of configuration files without the need to consult documentation. For
example, Trajectory GenerationComposite represents a list of Trajectory
modules, to be followed piecewise at specified generations. This module is
parametrized by a list of pairs (generation, trajectory), using the parameter
name generation trajectory:

Trajectory_GenerationComposite id_migration_rate

generation_trajectory = 0 id_migration_rate_0

generation_trajectory = 5 id_migration_rate_1

In this case, the module configuration can be interpreted as follows: at gen-
eration 0 use trajectory id migration rate 0, and then at generation 5 start
using trajectory id migration rate 1.

4.3 Top-level module: SimulatorConfig

SimulatorConfig is the top-level module containing:

• global simulation parameters

• references to the primary modules

Because SimulatorConfig has references to the primary modules, it must be
specified last in the configuration file.

4.3.1 Global simulation parameters

The main global simulation parameters are:

• output directory: forqs will create this directory and place all output
files here

20

• seed: seed for the random number generator

Command line parameters can also be specified on the command line as
name=value with no whitespace, as shown in this example:

forqs config.txt output_directory=mydir seed=12345

If a parameter is specified on both the command line and in the configuration
file, the command line takes precedence.

If no random seed is specified, forqs will first look in the current working
directory for the file forqs.seed containing a previously generated seed. If no
seed is found, forqs will generate a new seed from the system time. At the
end of each run, forqs generates a random seed and writes it to forqs.seed.
To summarize, forqs looks for the seed in the following places, in order of
preference:

1. command line

2. configuration file

3. forqs.seed

4. system time

4.3.2 References to primary modules

Of the primary modules, only PopulationConfigGenerator is required to be
specified, because it contains necessary information about population sizes and
the number of generations. The rest of the modules default to trivial implemen-
tations. The primary modules specified in SimulatorConfig are:

1. PopulationConfigGenerator

• required – no default

2. RecombinationPositionGenerator

• default: RecombinationPositionGenerator Trivial (no recombi-
nation – whole chromosomes are transmitted, chromosome pairs seg-
regate independently)

3. MutationGenerator

• default: none (no mutation)

4. VariantIndicator

• default: VariantIndicator Trivial (always returns 0)

5. QuantitativeTrait

• default: none (no quantitative traits)

21

• multiple QuantitativeTraits may be defined

6. FitnessFunction

• default: FitnessFunction Trivial (always returns 1 – all individ-
uals have equal fitness)

7. Reporter

• default: none (no reporters)

• multiple Reporters may be defined

4.4 Primary modules

4.4.1 PopulationConfigGenerator

For the reproduction/transmission step, in addition to information about the
current populations, the simulator needs to know the population configuration
for the next generation, which includes:

• number and sizes of the populations in the next generation

• mating distribution, which describes how parents are chosen from popu-
lations in the current generation to create offspring in the next generation

The PopulationConfigGenerator module provides an interface for the simula-
tor to obtain a population configuration for each generation. To create each new
individual in the next generation, the simulator chooses parent populations ac-
cording to the mating distribution, and then individual parents with probability
proportional to their fitnesses.

For the initial generation, individuals are assigned haplotype ids sequentially
starting at 0, with two ids assigned per individual (one for the maternal chromo-
somes, and one for the paternal chromosomes). Id offsets can be used to make it
easier to distinguish between populations – for example, individuals from pop-
ulation 1 may be assigned ids starting at 0, and individuals from population 2
may be assigned ids starting at 1000000.

PopulationConfigGenerator File allows the user to specify a population
configuration for each generation, giving the user precise control over the demo-
graphic histories of the simulated populations.

Alternatively, forqs provides higher level PopulationConfigGenerators

that allow the user to specify time-dependent population size and migration
rate trajectories (e.g. PopulationConfigGenerator LinearSteppingStone).
When a migration rate is specified from a source population to a destination
population, it is interpreted to be the probability that a new child in the des-
tination population has parents in the source population. Equivalently, it is
the expected proportion of individuals in the next generation of the destination
population whose parents were in the source population.

For debugging purposes, forqs optionally outputs the file forqs.popconfig.
txt with the population configuration that was used for each generation during

22

the simulation. This option can be selected by setting the write popconfig
parameter in SimulatorConfig:

write_popconfig = 1

4.4.2 RecombinationPositionGenerator

The RecombinationPositionGenerator module provides an interface for the
simulator to obtain a list of recombination positions. After querying the
RecombinationPositionGenerator, the simulator uses the list of recombina-
tion positions to create an offspring chromosome from a pair of parental chro-
mosomes.

There are multiple implementations of the RecombinationPosition-

Generator module interface, each of which uses a different method to generate
the recombination position list.

RecombinationPositionGenerator SingleCrossover assumes there is a
single crossover event at a position chosen uniformly at random over that chro-
mosome. This results in the offspring receiving one of the two parental or one
of the two recombined chromosomes with equal 25% probabilities.

RecombinationPositionGenerator Uniform generates recombination posi-
tions according to a uniform Poisson process along the chromosome, with rate
specified by the user.

RecombinationPositionGenerator RecombinationMap generates recombi-
nation positions according to previously estimated recombination maps, in the
format used by the HapMap project.

4.4.3 MutationGenerator

The user may specify a MutationGenerator module to generate random mu-
tations during the simulation. MutationGenerator provides a single interface
through which the simulator obtains a list of new mutations for a particular gen-
eration. However, MutationGenerator implementations may differ in how they
generate this list of mutations. For example, MutationGenerator SingleLocus

generates mutations only at a single site, while MutationGenerator Regions

generates mutations in multiple regions with different (possibly time-dependent)
mutation rates. In any case, the user will most likely want to also specify
Reporter Regions to report the final mutated sequences at the end of the sim-
ulation.

forqs current mutation implementation creates a new haplotype id for each
new mutation, storing it in a haplotype ancestry tree (so that information about
the ancestral haplotype can be preserved). This results in memory usage that
increases with each generation, which may cause performance degradation in
simulations involving a high total mutation rate for a large number of genera-
tions. (Here total mutation rate means θL, where θ = 4Nµ is the population-
scaled per-site mutation rate and L is the total length of the genomic region
where new mutations are being generated).

23

4.4.4 VariantIndicator

Internally, forqs represents each individual chromosome as a list of haplotype
chunk ids, with no information about particular variants carried on that chro-
mosome. In order to obtain an individual’s genotype at a locus, the simulator
must use a VariantIndicator, which is essentially a function that maps:

(locus, haplotype id) 7→ variant value

Typically these variant values will be 0/1 for SNPs; however, any value in
the range 0-255 can be used.

In general, a VariantIndicator needs to specify variant values only at se-
lected loci, because neutral loci have no effect on the simulation. Ancestral
neutral variation that is present on the haplotypes of the founders (individuals
in the initial generation) can be propagated to individuals at the end of the
simulation using the forqs map ms tool included in the forqs package.

Several VariantIndicator implementations are available, allowing the user
a variety of options for specifying the variants carried by the founders – these
can be found in the forqs Module Reference.

4.4.5 QuantitativeTrait

A QuantitativeTrait module represents a single quantitative trait. The mod-
ule encapsulates the information needed to calculate the trait value for each
individual based on the individual’s genotypes at a list of user-specified loci.
For example, QuantitativeTrait IndependentLoci allows the user to specify
loci and effect sizes, and the trait value for each individual is calculated by com-
bining that individual’s locus-specific effects additively (with user-specified envi-
ronmental variance). Full documentation on the available QuantitativeTraits
can be found in the forqs Module Reference.

4.4.6 FitnessFunction

A FitnessFunction module represents the function used to calculate an in-
dividual’s fitness based on the individual’s trait values. In simple cases, the
quantitative trait may actually be fitness, in which case the user may simply
use FitnessFunction Identity. In more complicated cases, fitness may de-
pend non-trivially on one or more quantitative traits. Full documentation on
the available FitnessFunctions can be found in the forqs Module Reference.

4.4.7 Reporter

Reporter modules are used to report information during the simulation. For
example, Reporter AlleleFrequencies reports the allele frequency of a user-
specified locus at each generation. The full list of available Reporters can be
found in the forqs Module Reference.

24

4.5 Building block modules

4.5.1 Locus and LocusList

The Locus module represents a single site on a chromosome, specified by the
chromosome pair index and position on the chromosome:

Locus my_locus

chromosome_pair_index = 0

position = 500000

Note that the chromosome pairs use 0-based indexing, so chromosome pair index

= 0 refers to the first chromosome pair.
LocusList modules are used to define a list of loci. The list can be specified

in two ways – in the first, loci are specified by chromosome number and position:

LocusList locus_list

chromosome:position = 1 1000123

chromosome:position = 2 2000234

[...]

Alternatively, the loci can be references to previously specified Locus objects:

LocusList locus_list_2

loci = my_locus_1 my_locus_2 [...]

Also, a random list of loci can be generated with LocusList Random:

LocusList_Random locus_list_random

locus_count = 10

4.5.2 Trajectory

In simple situations, constant parameter values can be used to specify an aspect
of the simulation. For example, it is common in population genetics to simulate
models where population sizes are constant. In more complicated scenarios,
parameter values (e.g. population sizes, migration rates, mutation rates, optimal
quantitative trait values) may vary in space (population) or in time (generation).

forqs uses Trajectory modules to describe such varying quantities. In
essence, a Trajectory represents a function:

(population index, generation index) 7→ value

Trajectories can be built by the user by starting with simple building blocks
(e.g. constant, linear, polynomial, exponential functions) and then composed
either by population or by generation. Once the Trajectory has been defined,
it can be referenced by name to be used as the parameter of another module.
Note that if a module expects a particular parameter to be a Trajectory, it
is an error to pass a constant integer or floating point number as the param-
eter value. In this case, if the user really wants a constant parameter value,
Trajectory Constant should be specified.

25

4.5.3 Distribution

Distribution modules represent probability distributions. These modules are
used to model, for example, effect sizes for QTLs or environmental variance for
a quantitative trait.

Distribution Constant can be used in situations where a module requires
a reference to a Distribution but a constant value is desired.

26

5 Simulating background variation

Forward-in-time simulators often use a burn-in period to allow neutral variation
to reach mutation-drift equilibrium. An alternative strategy, adopted by forqs,
is to use an existing program (such as Dick Hudson’s ms) to generate neutral
variation for the founders in the initial population. Chromosomes in the final
populations are mosaics of the founder chromosomes, so neutral variation can
be propagated to the mosaic chromosomes to generate sequence (or SNP) data.
The tool forqs map ms is included in forqs packages for this purpose. In this
section we discuss the propagation procedure using two examples.

5.1 Example 1: No new mutations

The first example is a simple case where there are no new mutations introduced
during the forqs simulation. This case includes many scenarios of interest
where the variation in the population has been generated over a small num-
ber of generations, primarily by recombination and recent admixture between
historically isolated (or inbred) populations.

In this case, the propagation of neutral variation is straight-forward: se-
quence variants on founder haplotypes are mapped onto the mosaic chromo-
somes of the final population. However, there are many details about the
mapping that must be specified by the user in a mapping configuration file.
forqs produces final populations of individuals that may carry multiple pairs
of chromosomes, with absolute positions specified by integers. ms outputs single
chromosomes, with relative positions specified by floating point numbers. The
mapping configuration thus needs to specify an integer range of positions on a
particular chromosome that correspond to the ms relative positions in the range
[0,1]. In addition, the user must specify how forqs haplotype ids correspond
to the ms-format variant sequences.

In the examples directory, the following 4 files can be found:

• population example.txt (forqs population data)

• ms test data 1.txt, ms test data 2.txt (ms-format files)

• ms map config.txt (mapping configuration file)

Perform the mapping using the following command:

forqs_map_ms population_example.txt ms_map_config.txt > output.ms

The resulting sequences in output.ms are mosaics of the sequences in the in-
put ms-format files. For example, the first chromosome of the first individual is a
mosaic of haplotypes 0, 1, 2, and 3, corresponding to the sequences ’aaaaaaaaa’,
’bbbbbbbbb’, ’ccccccccc’, and ’ddddddddd’, respectively. The output sequence
for this chromosome is ’aabccccdd’. Note that alphabetic letters are used in
these example sequences for illustration only – real ms output consists of 0’s
and 1’s.

27

5.2 Example 2: Including new mutations

In scenarios where it is important to include new mutations in addition to ances-
tral neutral variation, the mapping procedure has one additional complication.
When simulating forward in time, the neutral variants carried by individuals
have no effect on the dynamics of the simulation. forqs takes advantage of
this by ignoring (i.e. not storing in memory) any ancestral neutral variation on
the founding haplotypes. Each new mutation generated in forqs results in a
new haplotype id. Because of this, it is necessary to use an id ancestry map to
translate the new ids back to the ancestral ids before performing the mapping.
After the neutral variation has been mapped, the new mutations can then be
merged with the ancestral variants. This procedure is detailed in the follow-
ing shell script (and data files referenced in the script), which runs a complete
example of a forqs simulation followed by mapping ms sequences (with new
mutations merged):

examples/ms_map_example_new_mutations.sh

28

6 Validation

forqs has an extensive set of unit tests that verify the correctness of individ-
ual code modules. In addition, in order to validate the larger-scale behavior
of the simulations, we have compared forqs simulation results to theoretical
predictions from population genetics and quantitative genetics.

6.1 Single locus selection

We first considered simple scenarios where an individual’s fitness is determined
by that individual’s genotype at a single locus, under a wide range of fitness
effect sizes and dominance values. We compared the simulated allele frequency
trajectories to the deterministic trajectories predicted in the limit of infinite
population size.

In all cases, the simulated trajectories closely followed the deterministic tra-
jectories, with better agreement in simulations with larger population sizes, as
expected. Figure 4 shows the case of additive positive selection, for population
sizes of 100 and 1000.

0.25

0.50

0.75

1.00

0 25 50 75 100 125
Generation

A
lle

le
 F

re
qu

en
cy

N=100 p=.1 w=(1, 1.1, 1.2)

0.25

0.50

0.75

1.00

0 25 50 75 100 125
Generation

A
lle

le
 F

re
qu

en
cy

N=1000 p=.1 w=(1, 1.1, 1.2)

Figure 4: Selection on a single locus. The dark curves show the deterministic
trajectories, and the lighter curves show simulated trajectories. Populations of
size 100 and 1000 were simulated with additive fitness effect .1 at a single locus,
with the selected variant having initial allele frequency .1.

6.2 Decay of linkage disequilibrium

In the limit of infinite population size, linkage disequilibrium (measured by D,
the correlation between two variants at different sites) decays geometrically at
rate 1− r, where r is the recombination rate (see Figure 5 for an example run).

29

0.00

0.05

0.10

0.15

0.20

0.25

0 25 50 75 100
Generation

D

Figure 5: Decay of linkage disequilibrium. The dark curve shows the deter-
ministic trajectory, and the lighter curves show simulated trajectories. In this
example, D = .25 initially and r = .05.

6.3 Mutation-drift equilibrium

To validate our mutation implementation, we approximated the infinite-sites
model by simulating mutations generated randomly in large regions (1mb). We
set the per-site mutation rate to make the population-scaled mutation rate θ =
10, and simulated for enough generations to reach mutation-drift equilibrium.

We then compared the resulting site-frequency spectra {ξi} to theoretical
predictions, where ξ1 is the number of singletons, ξ2 is the number of doubletons,
etc. in the sample. Coalescent theory predicts that ξi = θ/i in expectation
(Fu 1995), under the assumption that the sample size is small compared to
the population size. When the sample size is close to the population size, the
Wright-Fisher model is expected to have approximately 12% more singletons
and 2% less doubletons compared to the coalescent expected values (Wakeley
and Takahashi 2003).

Site frequency spectra generated from the full population agree with the
Wright-Fisher large sample expected values, and site frequency spectra from
smaller samples agree with the coalescent expected values, as expected (Figure
6).

30

●

●
●

●●

●
●

●

●●

●
●

●●
●

●

●
●●●

●●
●

●●

12.00

11.00

10.00

5.00

3.33

2.50

0.00

1 2 3 4 5
Allele Frequency

S
ite

 C
ou

nt ●

●

●

●

●

coalescent

N = 10

N = 20

N = 100

large sample

θ = 10, 10N generations, 1000 sims

● ●

●
● ●

● ● ●
● ●

● ●
● ● ●

● ● ● ● ●

● ● ● ●
●

12.00

11.00

10.00

5.00

3.33

2.50

0.00

1 2 3 4 5
Allele Frequency

S
ite

 C
ou

nt

θ = 10, N = 100, n = 10, 1000 sims

Figure 6: Mutation-drift equilibrium. (left) Simulations for different pop-
ulation sizes are shown, together with expected values for both the coalescent
and Wright-Fisher with large sample size. (right) Small samples taken from a
larger simulated population agree with the coalescent expected values.

6.4 Response to selection

To validate our implementation of selection on quantitative traits, we simu-
lated a quantitative trait with 10 QTLs with identical additive effect sizes
and initial allele frequencies, which gives an approximately normal distribu-
tion of trait values in the population. We also used the forqs fitness function
FitnessFunction TruncationSelection, which selects a specified proportion
of individuals at the upper tail of the trait value distribution to produce offspring
for the next generation.

The Breeder’s Equation from quantitative genetics (Gillespie 2004; Falconer
and Mackay 1996) predicts the response to selection R from the heritability of
the trait h2 and the selection differential S:

R = h2S

where the S andR are the selected parent mean and offspring mean, respectively,
measured as deviations from the population mean.

Simulations run with various values for the heritability and proportion of
individuals selected agree with the response values predicted from the Breeder’s
Equation (Figure 7).

31

0.2 0.5 0.8

0.0

0.2

0.4

0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8
Heritability / Proportion selected

R
es

po
ns

e
to

 s
el

ec
tio

n

Figure 7: Response to selection 3 panels show simulations run at different
heritability levels (.2, .5, .8), with varying proportions of selected individuals
(.2, .4, .6, .8) (100 simulations each). The dark curves show the response values
predicted from the Breeder’s Equation.

6.5 Performance

The representation of chromosomes as haplotype chunks in forqs makes very
efficient use of memory, independent of the size of the chromosomes. This allows,
for example, simulation of entire genomes of individuals. One drawback to this
approach is that memory usage grows linearly with the number of generations,
due to recombination.

On a typical laptop computer, for a population size of 1 million, simula-
tions take ∼1.5 seconds per generation for neutral scenarios and ∼3 seconds per
generation with quantitative traits and selection. Decreasing the population
size allows the simulation of a greater number of generations in a reasonable
amount of time: for a population size of 10,000, it takes ∼3 seconds per 100
generations (without selection, with a slight increase with selection). Configu-
ration files for these benchmark scenarios are included in the forqs packages
(examples/benchmark_*.txt).

To illustrate the simulation of entire genomes, the configuration file examples/
example_qtl_random_full_human_genome.txt specifies a scenario where two
populations (each size 10,000) are selected for different optimum values of a
quantitative trait (Figure 8). In this simulation, individuals have human-sized
genomes (23 chromosome pairs, chromosome length 100 million base pairs), with
50 QTLs placed randomly across the genome; the simulation takes ∼2 seconds
per generation (averaged over 50 generations).

Such a simulation is not feasible for forward-in-time simulators that store
individual mutations in an array. For example, suppose that each locus for
each individual chromosome is encoded in a single bit. Then to simulate 20,000
individuals as in the above scenario, 16GB of memory (available on high-end

32

computers) will permit the simulation of only 3.2 million base pairs of sequence.
This is an order of magnitude smaller than the smallest human chromosome (or
roughly 0.1% of the human genome).

−1.0

−0.5

0.0

0.5

1.0

0 10 20 30 40 50
Generation

M
ea

n
tr

ai
t v

al
ue

population

1

2

Figure 8: Selection for different optimal values of a quantitative trait
Shown are mean trait values for two populations (each size 10,000) that are
selected for different optimal trait values. In this scenario, the quantitative
trait has 50 QTLs distributed randomly over 23 chromosomes, with effect sizes
drawn from an exponential distribution.

33

7 Software development

7.1 Building the program

forqs is written in C++, and makes extensive use of the Boost libraries, in-
cluding the Boost build system. It is regularly built and tested on OSX and
Linux. In addition, Windows binaries are built using cross-compilation with gcc
on Linux.

The code can be obtained via git from bitbucket:

git clone https://bitbucket.org/dkessner/forqs.git

If you have the both the Boost libraries and the Boost build system installed,
you can build forqs with the bjam tool, which is the Boost build system’s
equivalent of make:

cd forqs/src

bjam

7.2 Structure of the codebase

Most code units in the forqs project consist of three files:

• interface (header file)

• implementation (cpp file)

• unit test (cpp file)

For example, the code for the Locus module can be found in the files
Locus.hpp, Locus.cpp, LocusTest.cpp.

The unit test for each code unit is run during the build; the build is successful
only if all unit tests pass.

In addition to the unit tests, there are also regression tests, consisting of
scripts in the regression test directory. These tests prevent unintended be-
havior changes in the software during new development. Most of the tests are
based on the example configuration files in the examples directory, and consist
of running forqs and performing a diff comparison with known output. The
regression tests are controlled by a Makefile, and run by make.

The codebase includes all documentation, including the Latex source code
for this document. The forqs Module Reference is generated by Doxygen from
the source code – each module is documented using Doxygen markup in the
module’s header file, immediately preceding the module’s class declaration.

7.3 Software architecture

This section describes some of the design details of forqs that may be of in-
terest to programmers who would like to add new features.

34

7.3.1 Low-level data structures

These are the basic low-level data structures used by forqs:

• HaplotypeChunk: a pair of integers (position, id)

• Chromosome: an array of HaplotypeChunks

• Organism: an array of pairs of Chromosomes

• Population: an array Organisms

In this setup, Population can be seen as an array of arrays, which requires a
significant number of memory allocations. To avoid these memory allocations,
Population was re-implemented as a two dimensional array of Chromosome

pairs, resulting in a roughly 30% speedup.
The implementations produce identical results, and can be used in-

terchangeably. To accomplish this, Population is actually an inter-
face class, with two concrete implementations: Population Organisms and
Population ChromosomePairs. While the latter is faster, the former can be
more convenient for testing purposes.

In order to handle both cases in a unified manner, the class
ChromosomePairRange represents the begin/end of chromosome pairs belonging
to a single individual, and ChromosomePairRangeIterator does the appropriate
iteration through individuals, depending on the memory layout of the popula-
tion.

7.3.2 Configurable modules

Configurable modules in forqs are represented by the Configurable ab-
stract base class, which defines the common interface through which ob-
jects are instantiated and initialized based on parameters specified by the
user. The top-level module (SimulatorConfig), all primary modules (e.g.
PopulationConfigGenerator, Reporter, etc.), and all building block modules
(e.g. Trajectory, Locus) implement the Configurable interface.

The Configurable interface describes the functionality required to serialize
an object’s configuration, which must be representable as a list of name-value
pairs. (This is not actually very restrictive, since the value can be anything
representable as a string, including an array of numbers).

Configurable objects are instantiated by SimulationBuilder Generic,
which handles the mapping from the module name to the actual C++ class.
Each object in the user-specified configuration file is instantiated and reg-
istered by name so that other objects can obtain references to it if nec-
essary. SimulationBuilder Generic produces the final SimulatorConfig

used by forqs for the simulation. (Note on the name: there were other
SimulationBuilder classes that constructed SimulatorConfigs based on a
more limited set of parameters – these have since been deprecated in favor of
the more generic specification via configuration files.)

35

After instantiation, Configurable objects are configured/initialized in two
steps. First, the configure() method sets any parameters specific to this mod-
ule that are specified by the user. Second, after all objects have been configured,
the initialize() method allows the modules to communicate with each other.
For example, objects that need information about the lengths of the chromo-
somes (e.g. for recombination) can query the PopulationConfigGenerator,
which has this information.

Configurable objects are instantiated, configured, and initialized in the
order they are specified in the configuration file. It is important to note that
while objects can obtain references to previously instantiated objects during
the configure() step, they should not try to communicate via these references
until the initialize() step, since the objects they refer to may not be fully
initialized until then.

The main Simulator object interacts with Configurable objects through
intermediate interfaces. This allows the main simulation logic to be separated
from the specific behavior implemented by the various Configurable mod-
ules. For example, Reporter AlleleFrequencies and Reporter TraitValues

both implement the Reporter interface. Simulator will give each Reporter

information about the current populations, but doesn’t need to know what
they do with this information. As another example, the Simulator gives a
QuantitativeTrait object information about individuals’ genotypes and ex-
pects to receive trait values for each individual, but doesn’t need to know details
about how this is accomplished.

The Configurable interface also facilitates some features that make forqs

more user-friendly, because it provides a translation layer between the user and
program internals. For example, while 0-based indexing is used internally, from
the user’s perspective chromosomes and populations are numbered starting with
1. Also, Configurable modules can support multiple alternate parametriza-
tions. For example, linear trajectories may be parametrized by slope-intercept
or by two endpoints, and exponential distributions may be specified by the mean
or the rate, depending on which is more natural for a particular scenario.

7.3.3 Mutation handling

Because forqs tracks haplotype chunks rather than sequences of variants, mu-
tation is necessarily more complicated than recombination. This is because
a new point mutation essentially creates a new haplotype that is identical
to the original except at the mutated site. In order to accomplish this, the
VariantIndicator must be able to be updated with the new haplotype and
variant value. In addition, the haplotype’s ancestry must be stored, since that
haplotype chunk may contain other variants known by the VariantIndicator.
This is implemented with the special VariantIndicator Mutable that is not
specified by the user. Instead, it is a wrapper class that is automatically in-
stantiated when the user specifies a MutationGenerator. This wrapper class
provides the functionality for updating variants, but passes calls through to the
user-specified VariantIndicator for non-mutated loci.

36

7.4 Appendix: Boost libraries

The Boost C++ Libraries are an essential extension to the C++ Standard Li-
brary. In addition to providing functionality missing from the Standard Library,
the Boost filesystem library and build system insulate the programmer from
many platform-specific details.

If you have administrative access to your computer, you can use a package
manager to install the Boost libraries and build system. If not, you can install
Boost locally in your home directory. The following are instructions for doing
this on a Unix-like system (e.g. OSX or Linux):

download latest Boost package, uncompress

install boost libraries

cd boost_??? # go into the uncompressed directory

bootstrap.sh --help # see options

bootstrap.sh --prefix=$HOME/local # install in ~/local

./b2 # builds libraries -- get coffee (this can take a while)

./b2 install # installs stuff in ~/local/include/boost and ~/local/lib

install boost build

cd tools/build/v2

./bootstrap.sh

./b2 install --prefix=$HOME/local # puts bjam in ~/local/bin, boost-build in ~/local/share

also:

put ~/local/bin in your path (to find bjam)

you might need this in your environment:

export BOOST_BUILD_PATH=$HOME/local/share/share/boost-build

to avoid bjam warning: No toolsets are configured.

create the file user-config.jam in either ~ (home) or ~/local/share/boost-build

with the following line (note the space before ; is necessary):

using gcc ;

7.5 Appendix: Cross-compilation targeting Windows

Cross-compilation of Windows binaries from Linux can be done using tools from
the mingw-w64 project (http://mingw-w64.sourceforge.net/). On Debian-
based systems (e.g. Ubuntu, Mint), installing package g++-mingw-w64 will in-
stall the necessary tools and dependencies.

add this line to user-config.jam, which defines the toolset gcc-windows

(you need to tell Boost build which g++, ar and ranlib to use):

using gcc : windows : i686-w64-mingw32-g++ : <archiver>i686-w64-mingw32-ar

<ranlib>i686-w64-mingw32-ranlib ;

build the Boost libraries (or at least filesystem and system) for Windows

(you may need to fiddle with these command line parameters -- these worked for me),

from your Boost source dir:

bjam toolset=gcc-windows --prefix=$HOME/local_win32 threading=multi

37

http://mingw-w64.sourceforge.net/

target-os=windows link=static threadapi=win32 --without-mpi

runtime-link=static --without-python -sNO_BZIP2=1 --layout=tagged

note: LIBRARY_PATH doesn’t appear to work for cross-compilation, but you can

put the Boost library files directly in /usr/i686-w64-mingw32, where the various

development headers/libs are installed for mingw-w64

the forqs Jamroot contains a target ‘‘windows’’, which will build Windows binaries

and put them in forqs/bin_windows:

bjam windows

References

Falconer, D. S. and Mackay, T. F. (1996). Introduction to Quantitative Genetics
(4th Edition). Benjamin Cummings, 4 edition.

Fu, Y. X. (1995). Statistical properties of segregating sites. Theor Popul Biol ,
48(2), 172–197.

Gillespie, J. H. (2004). Population Genetics: A Concise Guide. Johns Hopkins
University Press, 2nd edition.

Wakeley, J. and Takahashi, T. (2003). Gene genealogies when the sample size
exceeds the effective size of the population. Mol. Biol. Evol., 20(2), 208–213.

38

	Top
	Getting Started
	Design Overview
	Tutorial Introduction
	A minimal example
	Recombination and reporting output
	Wright-Fisher simulation
	Selection
	Trajectories
	Quantitative traits
	Reporting haplotype frequencies

	Modules
	Module types and interfaces
	Module specification and instantiation
	Top-level module: SimulatorConfig
	Global simulation parameters
	References to primary modules

	Primary modules
	PopulationConfigGenerator
	RecombinationPositionGenerator
	MutationGenerator
	VariantIndicator
	QuantitativeTrait
	FitnessFunction
	Reporter

	Building block modules
	Locus and LocusList
	Trajectory
	Distribution

	Simulating background variation
	Example 1: No new mutations
	Example 2: Including new mutations

	Validation
	Single locus selection
	Decay of linkage disequilibrium
	Mutation-drift equilibrium
	Response to selection
	Performance

	Software development
	Building the program
	Structure of the codebase
	Software architecture
	Low-level data structures
	Configurable modules
	Mutation handling

	Appendix: Boost libraries
	Appendix: Cross-compilation targeting Windows

	References

