Topics:

  • polynomials
    • $p(x) = a_n x^n + a_{n-1}x^{n-1} + … a_1 x + a_0$
    • leading term $a_n x^n$, degree, and end behavior
    • constant term $a_0$: y-intercept
  • polynomial division
    • dividing polynomial $p(x)$ by divisor $d(x)$ gives us a quotient $q(x)$ and a remainder $r(x)$ with $\deg(r) < \deg(d)$
      • $p(x) = q(x)d(x) + r(x)$
      • $\dfrac{p(x)}{d(x)} = q(x) + \dfrac{r(x)}{d(x)}$
  • Remainder theorem:
    • $p(x) = q(x)(x-a) + r$
    • When dividing a polynomial $p(x)$ by $x-a$, the remainder is $p(a)$.
  • Factor theorem:
    • $(x-a) \,|\, p(x) \quad\Leftrightarrow\quad p(a) = 0$
    • $x-a$ is a factor of $p(x)$ $\;\Leftrightarrow\;$ $a$ is a root (zero) of $p(x)$

Reference:
OSP 3.4
OSP 3.5
OSP 3.6

notes (pdf)