Topics:

  • polynomials
    • p(x)=anxn+an1xn1+a1x+a0p(x) = a_n x^n + a_{n-1}x^{n-1} + … a_1 x + a_0
    • leading term anxna_n x^n, degree, and end behavior
    • constant term a0a_0: y-intercept
  • polynomial division
    • dividing polynomial p(x)p(x) by divisor d(x)d(x) gives us a quotient q(x)q(x) and a remainder r(x)r(x) with deg(r)<deg(d)\deg(r) < \deg(d)
      • p(x)=q(x)d(x)+r(x)p(x) = q(x)d(x) + r(x)
      • p(x)d(x)=q(x)+r(x)d(x)\dfrac{p(x)}{d(x)} = q(x) + \dfrac{r(x)}{d(x)}
  • Remainder theorem:
    • p(x)=q(x)(xa)+rp(x) = q(x)(x-a) + r
    • When dividing a polynomial p(x)p(x) by xax-a, the remainder is p(a)p(a).
  • Factor theorem:
    • (xa)p(x)p(a)=0(x-a) \,|\, p(x) \quad\Leftrightarrow\quad p(a) = 0
    • xax-a is a factor of p(x)p(x)     \;\Leftrightarrow\; aa is a root (zero) of p(x)p(x)

Reference:
OSP 3.4
OSP 3.5
OSP 3.6

notes (pdf)