Topics:

  • linear transformations in R3\mathbb{R}^3
    • determinant and volume
  • cross product w=u×v\vec{w} = \vec{u} \times \vec{v}
    • w\vec{w} is orthogonal to u\vec{u} and v\vec{v}
    • w|\vec{w}| = uvsinθ|\vec{u}||\vec{v}|\sin\theta = area of parallelogram
    • right hand rule
  • scalar triple product
  • uv2+u×v2=u2v2 |\vec{u} \cdot \vec{v}|^2 + |\vec{u} \times \vec{v}|^2 = |\vec{u}|^2 |\vec{v}|^2

Reference: OSC 2.4 Cross Product

notes (pdf)