1.5 Cross product
Topics:
- linear transformations in $\mathbb{R}^3$
- determinant and volume
- cross product $\vec{w} = \vec{u} \times \vec{v}$
- $\vec{w}$ is orthogonal to $\vec{u}$ and $\vec{v}$
- $|\vec{w}|$ = $|\vec{u}||\vec{v}|\sin\theta$ = area of parallelogram
- right hand rule
- scalar triple product
- $ |\vec{u} \cdot \vec{v}|^2 + |\vec{u} \times \vec{v}|^2 = |\vec{u}|^2 |\vec{v}|^2 $
Reference: OSC 2.4 Cross Product