Topics

  • 3D space, Linear Algebra
  • Vector-valued Functions
  • Functions of Several Variables
  • Optimization
  • Multiple Integrals

Selected topics from:

  • Differential Equations
  • Geometric Algebra

Semester 1 Topics

OSC3: OpenStax Calculus Volume 3
OSC2: OpenStax Calculus Volume 2
OSP: OpenStax Precalculus

ABD: Calculus (Anton, Bivens, Davis, 10th ed)

Unit Topic Old Chapters Open Chapters
1 3D Space ABD Ch 11 OSC3 Ch 2
2 Vector-valued functions ABD Ch 12 OSC3 Ch 3
3 Functions of Several Variables ABD Ch 13 OSC3 Ch 4

Semester 2 Topics

Unit Topic Old Chapters Open Chapters
4 Optimization ABD Ch 13.8-13.9 OSC3 4.7-4.8
5 Multiple Integrals ABD Ch 14 OSC3 Ch 5
6 Differential Equations   OSC2 Ch 4
6 (alt) Geometric Algebra    

Unit 1: 3D Space

  • 1.1 3D space
    • 3D coordinate systems
    • distance formula
    • equations of simple planes, spheres
    • reference: ABD 11.1, OSC3 2.2
  • 1.2 Vectors
    • vector operations
    • reference: ABD 11.2, OSC3 2.1-2.2
  • 1.3 Dot Product
    • dot product
    • projections
    • reference: ABD 13.3, OSC3 2.3
  • 1.4 Matrices and determinants
    • matrix operations
    • column vectors
    • linear transformations and matrix multiplication
    • determinant and area
    • 2D transformations: scale, reflection, rotation, projection
    • reference: OSP 9.5, 9.7, 9.8
  • 1.5 Cross Product
    • linear transformations in $\mathbb{R}^3$
    • orthogonality
    • cross product, area of parallelogram
    • scalar triple product
    • reference: ABD 11.4, OSC3 2.4
  • 1.6 Lines and Planes
    • parametric equations of lines
    • normal vectors
    • equations of planes
    • calculate distances from points to lines and planes
    • reference: ABD 11.5-11.6, OSC3 2.5
  • 1.7 Cylindrical and spherical coordinates
    • cylindrical coordinates
    • spherical coordinates
    • figure out conversion formulas from picture, not memorization
    • reference: ABD 11.8, OSC3 2.7
  • 1.8 Projection and linear regression
    • bonus lesson on statistics viewed from the point of view of linear algebra

Unit 2: Vector-valued functions

  • 2.1 Vector-valued functions
    • parametric curves
    • vector valued functions (curves)
    • reference: ABD 12.1, OSC3 3.1
  • 2.2 Calculus of vector-valued functions
    • derivatives of parametric curves
    • tangent vectors of curves
    • reference: ABD 12.2, OSC3 3.2
  • 2.3 Arc length
    • arc length
    • reparametrization
    • reference: ABD 12.3, OSC3 3.3
  • 2.4 Tangent, normal, binormal
    • tangent, normal, binormal
    • reference: ABD 12.4, OSC3 3.3
  • 2.5 Motion
    • position, velocity, acceleration
    • projectile motion
    • reference: ABD 12.6, OSC3 3.4
  • 2.6 Polar conics
    • recall conics topics from precalculus: focus, directrix, eccentricity
    • geometric definitions of conic sections
    • polar equations for conic sections
    • reference: ABD 10.6, OSP 10.5
  • 2.7 Kepler’s Laws
    • Newton’s Laws -> Kepler’s Laws
    • reference: ABD 12.7, OSC3 3.4

Unit 3: Functions of several variables

  • 3.1 Functions of two or more variables
    • functions of several variables
    • level sets
    • origami hyperbolic paraboloids
    • reference: ABD 13.1, OSC3 4.1
  • 3.2 Limits and continuity
    • limits and continuity (multivariable)
    • reference: ABD 13.2, OSC3 4.2
  • 3.3 Partial derivatives
    • partial derivatives
    • reference: ABD 13.3, OSC3 4.3
  • 3.4 The derivative
    • derivative as linear transformation
    • differentiability
    • tangent planes
    • reference: ABD 13.4, OSC3 4.4
  • 3.5 Linear transformations and approximation
    • derivative, tangent plane, linear approximation
    • composition of linear transformations
    • differentiability and linear transformations
    • reference: OSC3 4.4
  • 3.6 Chain rule
    • composition of linear transformations
    • multivariable chain rule
    • reference: ABD 13.5, OSC3 4.5
  • 3.7 Directional derivatives and gradient
    • directional derivatives
    • gradient
    • reference: ABD 13.6, OSC3 4.6
  • 3.8 Level surfaces and tangent planes
    • level surfaces
    • tangent planes of level surfaces
    • reference: ABD 13.7, OSC3 4.6

Unit 4: Optimization

  • 4.1 Rotation of axes
    • conic sections
    • removing $xy$ term in general quadratics
    • reference: ABD 10.5, OSP 10.4
  • 4.2 Maxima and minima
    • 2nd derivative test
    • Extreme value theorem
    • maxima, minima, saddle points
    • reference: ABD 13.8, OSC3 4.7
  • 4.3 Constrained optimization
    • handling constraints by substitution
    • reference: ABD 13.8, OSC3 4.7
  • 4.4 Lagrange multipliers
    • handling constraints by using Lagrange multipliers
    • reference: ABD 13.9, OSC3 4.8

Unit 5: Multiple integrals

  • 5.1 Double integrals
    • double integrals
    • reference: ABD 14.1, OSC3 5.1
  • 5.2 More double integrals
    • integration over non-rectangular regions
    • reference: ABD 14.2, OSC3 5.2
  • 5.3 More more double integrals
    • volumes
    • reference: ABD 14.2, OSC3 5.2
  • 5.4 Double integrals in polar coordinates
    • double integrals in polar coordinates
    • reference: ABD 14.3, OSC3 5.3
  • 5.5 Parametric surfaces and surface area
    • cylinder, cone, sphere
    • parametric equations for surfaces
    • surface area
    • reference: ABD 14.4, OSC3 6.6
  • 5.6 More surfaces
    • parametrization of sphere
    • torus surface area and volume
    • reference: ABD 14.4, OSC3 6.6
  • 5.7 Triple integrals
    • triple integrals
    • average value of a function
    • reference: ABD 14.5, OSC3 5.4
  • 5.8 Cylindrical / spherical coordinates
    • integration in polar, cylindrical, spherical
    • volume elements
    • reference: ABD 14.6, OSC3 5.5
  • 5.9 Change of variables
    • Jacobians
    • change of variable formula derivations: polar, cylindrical, spherical
    • reference: ABD 14.7, OSC3 5.7
  • 5.10 Centers of Mass
    • centroids of curves and regions
    • reference: ABD 14.8, OSC3 5.6
  • 5.11 Disks and Shells
    • volumes and surfaces of revolution
    • computing volumes using disks and shells
    • disks and shells as triple integrals
  • 5.12 Pappus’ Centroid Theorems
    • surface area
    • volume

Unit 6: Differential equations

  • 6.1 Separable Equations
    • separable differential equations
    • reference: OSC2 4.1, 4.3
  • 6.2 Integrating factors
    • first order linear equations
    • reference: OSC2 4.5
  • 6.3 Population growth
    • exponential and logistic population models
    • reference: OSC2 4.4

Alternate Unit 6: Geometric Algebra

  • 6.1 Wedge Product
    • wedge product in $\mathbb{R}^2$
  • 6.2 Geometric Product
    • geometric product in $\mathbb{R}^2$
  • 6.3 Wedge Product in 3D
    • wedge product in $\mathbb{R}^3$
    • comparison with cross product
    • equation of plane
    • distance to plane
  • 6.4 Geometric Product in 3D
    • geometric product in $\mathbb{R}^3$
    • reflections and rotations
  • 6.5 Cramer’s Rule
    • Cramer’s rule
  • 6.6 Rotations
    • more on composing rotations in 3D